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Abstract. We present an application of machine learning aatistics to the problem of
distinguishing between defective and non-defectindristrial workpieces, where the defect
takes the form of a long and thin crack on theasafof the piece. From the images of pieces
a number of features are extracted by using tlmeigH transform and the Correlated Hough
transform. Two datasets are considered, one congapnly features related to the Hough
transform and the other containing also featuréstae to the Correlated Hough transform.
On these datasets we have compared six differanbifey algorithms: an attribute-value
learner, C4.5, a backpropagation neural networkir&dl@/orks Predict, a k-nearest neighbour
algorithm, and three statistical techniques, lindagistic and quadratic discriminant. The
experiments show that C4.5 performs best for bediure sets and gives an average accuracy

of 93.3 % for the first dataset and 95.9 % forsheond dataset.



1 Introduction

We present an application of machine learning aatisics to a problem of Automated
Visual Inspection (AVI) that consists of automalliganspecting the integrity of metallic
industrial workpieces. The aim is to classify egulkce as defective or non-defective
depending on whether it contains or not surfacedasf visible only under UV light. The
surface defect is a crack that is visible underligtit as a bright, thin and roughly rectilinear
shape.

In order to recognize cracks, a set of visual giies has been selected for characterizing
the images of pieces. In this way, each image ssridzed by a set of numerical attributes and
machine learning can be applied in order to firdbasifier for new images.

In particular, we use the Hough transform (HT) thas been proposed in the literature of
image analysis for detecting straight lines [9]eHil transforms the image space into another
two-dimensional space (called Hough space) wherk kegal maximum point corresponds to
a straight edge in the image space. Moreover, andtansformation is used, the Correlated
Hough transform (CHT), which has the specific aiindetecting shapes that are bright,
rectilinear and thin [3]. The CHT transforms an gadrom the Hough space to the Correlated
Hough space where each local maximum point reptesepair of close, straight edges in the
image.

In order to test the effectiveness of these diffeqgrimitives in classification, we have
considered two different datasets, one containgaguies from the Hough and the Correlated

Hough space, and another containing features fneniHbugh space only.



On the two datasets, we have compared the effeetdge of six different learning
algorithms: an attribute-value learner, C4.5, akpempagation neural network, NeuralWorks
Predict, a k-nearest neighbour algorithm and tistaéstical techniques, linear, logistic and
quadratic discriminant.

The paper is divided as follows: the next sectidroduces the specific application. Section
3 discusses the adopted visual primitives. Sedfiotiscusses the results of experiments,
providing a comparative analysis among the differalyorithms. Section 5 presents a
discussion of the time complexity of the approaod af its applicability in domains with
more examples and tighter time constraints. SecBopresents related works and a
comparison with results obtained in the StatLoggmtoon image datasets. Finally, the last

section provides our conclusions.

2 Defect Detection

The application goal is visual integrity inspectiohmetallic industrial workpieces and in
particular the location of surface and subsurfafedats in ferromagnetic materials.

This goal cannot be reached by normal, visibletligbpection but is usually accomplished
by adopting a “Magnetic-Particle Inspection” tecjue (MPI) [10]. First, the piece is
magnetised and dipped in a water suspension ofefigent ferromagnetic particles; then, it is
exposed under ultraviolet light and examined by uanén inspector. When surface or
subsurface defects are present, they produce adedield that attracts and concentrates the
ferromagnetic particles. The human eye can theitygesceive defects, since ultraviolet light
greatly enhances fluorescence. Off-the-shelf CCBeras and frame grabbers are used in

order to acquire the images.



Examples of images with cracks are shown in figure2 and 3. Figure 1 shows a whole

image, while figures 2 and 3 show two cracks iratdletnore and less evident respectively.

Figure 1. Image with a crack.

Figure 2. Detail of an evident crack.

Figure 3. Detail of a less evident crack.

3 Classification by Visual Primitives

The defect shape was known a-priori by means afaitgtive model provided by human
inspectors. They defined it as a “thin, roughltifeear and very bright shape”.
On the basis of this rather generic model, wetelica set of measurable visual properties

that are associated with certain aspects of thitafiae model:



* bright shape - high local gradient of luminosity around the edges
* rectilinear - with two main edges approximately straight;
 thin - with an upper-bounded distance between the two edges.

Once the visual properties are elicited, a setuaingjtative image operators able to reflect
them must be defined. Usually, the approach cansisdefining a redundant set of image
operators, or features, each being somehow refatede or more visual properties, that will
be later selected in a machine learning phase.chbi&e of the initial feature set is critical
since the information lost at this step cannotdo®vered later.

To this aim, we defined and compared two differfer@dture sets, motivated by opposite
rationales: in the first set, we included a spé&ma primitive called Correlated Hough
transform (CHT [3]), which has been proposed fdedion of objects corresponding exactly
to our model; in the second set, we used only inmgggeators of general use. The two feature
sets reflect a different control of the visual agpef the problem, the first one calling for the
insight on image operators typical of a computeiori specialist, while the second requires
just the use of well-known image operators.

Both feature sets include the Hough transform (HiWhpse essential characteristics will
now be described. The HT has been proposed in ahguter vision literature to detect
straight lines [9]. It consists of a space transi@tion from the image space to a 2-coordinate
parameter space: “collinear” points forming a gfinéiline segment in the image space are
collected into a single point of the parameter spatere the point’s first co-ordinat, is
the slope of the straight line and the second dinate,p, is its distance from the origin. Each
point in the Hough space has a value which is éx#we number of collinear points in the
straight line segment; thus, the longer the lingireent, the higher is the point’s value in the

Hough space. Furthermore, in this work we adoptezfiaed version of the Hough transform,



called gradient-weighted Hough transform (GWHT,)[8] which each collinear point is

weighted by its luminosity gradient. Therefore, kg the Hough space (i.e. points with high
values) correspond to the existence of straighghbidines in the image space, or, in other
words, the problem of detecting lines in the imagpace is simplified into the task of
detecting peaks in the Hough space.

In the inspected images, a crack has two edgesswiilar gradient magnitude, the same
direction but opposite orientation; since the cracthin, the distance between the two edges
is upper-bounded. Therefore, two peaks must beceten the Hough space, with similar
values and theip, 9 parameters mutually constrained. In alternativhéoseparate detection
of these two peaks, it is possible to exploit therr€lated Hough transform. The CHT
performs a post-processing of the GWHT Hough sibgoeorrelating the area where the first
peak is detected with the one where the secondgieakd be located: if it is actually present,
the resulting correlation value is very high ana tee easily detected. The CHT has been
proven robust to non-ideality and noise, sincedéeection after correlation is more reliable
than the detection of the two separate peaks inHthegh space. However, the CHT itself is
not sufficient for detecting cracks which differaigly from their ideal aspect, and therefore
many other features were also considered.

The dataset based on the CHT (called CH datasetdios the following features:

1.CH (Correlated Hough_Peak): this is the maximum value in the Correlated Hosghce;
its p, 9 co-ordinates (wher& [0, 11), which correspond to the parameters of a sttaigh

line in the image located on the crack, in the ¢haea crack is present.



2.H1 (First_Hough_Peak): this is the value in the point of the Hough spadé the same co-
ordinatesp, 0 as the correlated Hough peak, where the first pedérmed if a crack is
present.

3. H2 (Second_Hough_Peak): the peak in the Hough space betwaemd 2t at the ideal point
where the second straight edge should be found.

4. H22 (Second_Hough_Average): this feature is CH divided by H1; it measureshbyw much
the correlation operation increases the evidentkeotrack with respect to the uncorrelated
Hough space.

5. Thickness: the mutual distance between H1 and H2. It reptsse object thickness.

6. Number_of Points: the number of voting points accumulated in H1jolhestimates the
edge length.

7. Average Vote: the average "vote" of the voting points, i.e. #werage luminosity gradient
of each point voting for H1 (computed by dividingl Hby the Number_of Points); it
measures the average luminosity gradient alongréuek profile.

8. Average Image Gradient: the average luminosity gradient of the imagesit different
property with respect to the others, since it abgl, meaning that it is an overall feature of
the whole image. It might be used by the classiigra “normalization” attribute, since
images with low values of the average gradient haeportionally lower CH and Hough

space values.

Operationally, we acquire images with relevant \#evf the mechanical piece and for each
image we compute the CHT. Then, we detect the ClaXimmum (the CH feature) and record
a case with CH and the other associated featureesaWe then detect all the points of the

correlated Hough space whose value is greaterdhaqual to an assigned percentage of the



maximum (75% was used in the experiments), anddezcase for each of them; this is done
in order to catch multiple cracks that can be prese a single image. After acquiring the
cases, we pre-classify each of them into the twegoaies ofDefect or NoDefect by checking
manually if the straight line segment correspondirtly the case was located on a real crack
in the image or not. For the CH dataset, the niatiequired to extract all the cases from an
image of 768 x 576 pixels was about 3.4 s on aNsB@ Pentium 11l PC.

In the approach followed the CHT plays a major relace the CH maximum is the feature
that determines the position where the crack malptated. However, the CHT is a highly
specialized operator, and it is interesting to apph the problem with a feature set with
additional standard features, and compare the qmeaioce of the resulting classifiers.

Therefore, in the second dataset set (called HH&i@set) we excluded the CH value and

included the following features:

1. H1: the value of the Hough maximum in the radgée[0,m], where the first peak is formed
in the case that a crack is presentpit® co-ordinates correspond to the parameters of a
straight line located on one edge of the crack.

2.H2: the value of the Hough maximum in the ramgeél[t, 21, where the second peak is
formed if a crack is present; if$, 9’ co-ordinates correspond to the parameters of a
straight line located on the other edge of thelcrelowever, if multiple cracks are present,
H1 and H2 may not be associated with the same crack

3. Number_of Votes: the sum of the number of image points that weaasformed into H1
and H2.

4. Distance: the mutual distance between H1 and H2 in the Hogmpce. It represents the

object thickness if H1 and H2 correspond to theesarack.



5. Ddlta_rho: the p’ - p| value, and

6. Delta_theta: the P’ - 9 - 1| value.Delta_rho andDelta_theta express the distance between
the two peaks along theandd directions, respectively. In the case of a samaé aeck,
Delta_theta should be close to 0 amElta rho upper boundedelta rho andDelta_theta

are related t®istance by the following formula :

Distancez\/DeIta_rho2 + Delta_theta® .

7.Delta_product: the productdelta_rho * delta_theta. It correlates theDelta rho and
Delta_theta values, expecting small values for the produ¢hencase of a same real crack.

8. Average Image Gradient: The average luminosity gradient of the image.

Since there is not an explicit correlation operatetween H1 and H2, we also added some

basic arithmetic functions of the H1 and H2 values:

9. Product: the product H1 * H2: should be high in the cata ceal crack (about the square
of each of the two values).

10. Ratio: the ratio H1 / H2: should be close to 1 in theecaf a real crack.

11. Sum: the sum H1 + H2: should be high in the caserafaacrack (about double each of
the two values).

12. Difference: the difference H1 - H2: should be close to Chim tase of a real crack.

These arithmetic functions are simply combinatioh®ther features and as such may be
considered redundant; yet they have been explititiuded in this feature set since they
are related with the model and may improve thesdiass’ performance should the

classifier not explore linear or quadratic combimag or ratios of the feature values.



Operationally, we acquire images with relevant \#evf the mechanical piece and for each
image we compute the Hough space with the GWHTn e detect the H1 and H2 maxima
and record them in a case with the other associatddre values. We then repeat the process
for all the points of the Hough space in the rajiget and [T, 2] whose value is greater or
equal to an assigned percentage of H1 and H2,cteegly, and record a case for each couple;
this is done in order to catch multiple cracks tbah be present in a single image. After
acquiring the cases, we pre-classify each of theto the two categories dbefect or
NoDefect by checking manually if the straight-line segmertsresponding with H1 and H2
were located on a same real crack. For the H1 H&sdfg the runtime required to extract all

the cases from an image of 768 x 576 pixels wastahd s on a 500 MHz Pentium Il PC.

4 Experiments

We have experimented and compared three differanhime learning techniques: attribute-
value learning, backpropagation neural networks iasthnce-based learning. Moreover,
due to the numeric nature of all the attributes,hage also used statistical techniques in
order to compare their performance with that of Inae learning tools.

For attribute-value learning we have used C4.5 Hich is able to learn both decision
trees and rules. For backpropagation neural nesyoxe have used a commercial system,
Predict by NeuralWorKks For instance-based learning, we have used theakest neighbour
algorithm that is included in the Weka library ofchine learning softwafeAs regards

statistical techniques, we have used the algoritbmsrim, Logdisc and Quadisc, developed

1 A demo version of Predict can be found at httmtwneuralware.com/ .

2 The Weka machine learning software can be doweldad from

http://www.cs.waikato.ac.nz/ml/weka/index.html
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under the Statlog project [11], that implement essely the linear discriminant, the logistic
discriminant and the quadratic discriminant.
In the following, we first give a brief descriptiai each algorithm and then we present the

results of experiments.

41 Discrim

Discrim finds a linear discriminant, i.e., a hypare in the p-dimensional space of the
attributes. Given the values of the attributes néw pattern, its class is found by looking at
the position of the corresponding point with respgedhe hyperplane.

The hyperplane equation is found on the assumptiorormal probability distribution: the
attribute vectors for the examples of cl@ssre independent and follow a certain probability
distribution with probability density function (pdf. A new point with attribute vector x is
then assigned to that class whose probability terignction fi(x) is greatest. This is a
maximum likelihood method. The distributions aresutaeed normal (or Gaussian) with
different means but the same covariance matrix. piwbability density function of the

normal distribution is

1
[2n2]

fi(x) = eXF(—%(X — ) 27 (x _:ui)J (1)

where i is a p-dimensional vector denoting the theoretioaglan for class and Z, the
theoretical covariance matrix, igpax p matrix that is necessarily positive definite. histcase
the boundary separating the two classes, definatidogquality of the pdfs, can be shown to

be a hyperplane that passes through the mid-pbthedwo means. Its equation is
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KE =) =5 o+ 1) £ 0 = 1) =0 2)
wherey; is the population mean for cla8s When using this formula for classification the
exact distribution is usually not known and the goaeters must be estimated from the
available sample. With two classes, if the sampéams are substituted fpr and the pooled

sample covariance matrix faX, then Fisher’'s linear discriminant [8] is obtainethe

covariance matrix for a dataset withexamples from clas is

XTX -X"X (3)

whereX is then; x p matrix of attribute values and is thep-dimensional row vector of

attribute means. Thaooled covariance matrix Sis

S= Z(ni _1)S|
n-q

(4)

where the summation is over all the classes @nad) is chosen to make the pooled

covariance matrix unbiased.

4.2 Quadisc

Quadisc performs a quadratic discrimination. Quiadrmiscrimination is mostly similar to
linear discrimination, with the difference that tlserface separating the two regions is
quadratic. This means that the discriminating fiamctvill contain not only the attributes but
also their squares and the products of two atedhuéVith respect to the case of probability
maximization seen for Discrim, if we remove theussption that the normal distributions
have the same covariance matrix S, we obtain argtiadurface, for example an ellipsoid or

a hyperboloid.
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The simplest quadratic discrimination function &class is defined as the logarithm of the
corresponding probability density function and iigeg by equation 5 in the case of differing

prior probabilities. The suffix i is used to indiealass A

10g 71, =10g 77 -2 10g(det®) 5 (x~ ) %, (=41 (5)

In this equationmg stands for the prior probability of clags As before, the means and
covariance matrix are substituted by their samplenterparts obtained from the training set.
In the same wayryt is substituted by the sample proportion of cl&ssexamples. For
classification, the discriminant is calculated éaich class and the one giving the highest value
is chosen.

The most frequent problem with quadratic discrimiisaarises when some attribute has
zero variance in one class, for then the covariana&ix cannot be inverted. One way to
avoid this problem is to add a small positive canstterm to the diagonal terms in the

covariance matrix (this corresponds to adding ramdoise to the attributes).
4.3 Logdisc

Logdisc performs a logistic discrimination. As larediscriminants, a logistic discriminant
consists of a hyperplane separating the classéiseirbest possible way, but the criterion
used to find the hyperplane is different. The mdtlamlopted in this procedure is to
maximize a conditional probability. In theory, whehe attributes have a normal
distribution with equal covariances and are indejean from each other, linear and logistic
discriminants are equivalent. Different results ab¢ained when these hypotheses are not

satisfied.
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The method described here is partially parametscthe actual pdfs for the classes are not
modelled, but rather, the ratio between them. Iti@dar the logarithms of the ratios of the
probability density functions for the classes am@glled as linear functions of the attributes.
Thus, for two classes,

IogM =a+fx (6)
f,(x)

wherea and the p-dimensional vectBrare the parameters of the adopted model and must
be estimated. The case of normal distribution $pecial case in which these parameters are
functions of the prior probabilities, the class meand the common covariance matrix.

The parameters are estimated by maximum conditidredihood. The model implies that,
given attribute valueg, the conditional class probabilities for classesaAd A take the

forms:

_ exp@+BXx)
PN = e e 5% ()
P(A |X) = .
2 1+exp@ + ,B'X) (8)

Given independent samples for the two classegdlemeters are estimated by maximizing
the probability:
L@B)= []PA) []PA, 1% )
{A,,Samplg {A,.samplg
Iterative methods have been proposed in ordertimate the parameters, for example in
[2] and [4]. Since in practice there is often étillifference between the logistic and linear

discriminants, the latter are taken as a startoigtgor the former.
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4.4 k-nearest neighbour

In instance based learning, training examples a@d wdirectly for classifying unseen
examples, no explicit description of the targetasgpt is built. In order to classify an unseen
example, the distance of the unseen example froth &aining example is computed
(according to a chosen distance function) in otdetetermine the class of the instance. In
the k-nearest neighbour algorithm, the unseen elammssigned the most common class
value in the set of k-nearest training examples.

In our experiments we have chosen k=1 in orderotopgare our results with those of the
Statlog project (therefore in the following we wilkfer to nearest-neighbour as NN).
Moreover, a standard Euclidean distance was useerewthe square of each attribute
difference is divided by the standard deviatiortha attribute in the training set, in order to

take into account the different scales of the wariattributes:

d(x"x") = \/i(xli _.X”i j (10)

i=1 a
The implementation of NN which was used for theezkpents is the IB1 algorithm from

the Weka library of machine learning software.
45 NeuralWorksPredict

Predict by NeuralWorks is a system for training tidlalyer neural nets. Predict uses an
adaptive gradient learning rule which is a formbatk-propagation. Predict does not start
from a fixed network architecture but uses a camsire method for determining a suitable

number of hidden nodes. This constructive methaéfesred to as "Cascade Learning"” [5]
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and is loosely characterized by the fact that hidadedes are added either one or a few at a
time. New hidden nodes have connections from ble¢hitput buffer and the previously
established hidden nodes. Construction is stopgezhywerformance on an independent test

set shows no further improvement.

46 C45

C4.5 [14] is a system for learning rules and deaidiees. Its peculiarity arei the heuristics

it adopts in order to select the test to perforraaath step. These heuristics are based on the
notion of entropy from information theory which repents the amount of “dis-uniformity”

of examples in the training set with respect to thess attributes: at each step the test
chosen is that which makes the resulting subsetsiésrm as possible with respect to the
class attribute, thus ultimately selecting subseistaining examples from only one, or a

small number, of classes.

4.7 Results

All systems have been tested on the CH and H1 Hasdts employing 10-fold cross
validation. Both datasets contain 317 cases of lwBi¢ belong to the Defect class and 250
to the NonDefect class. The spread of attributaasls larger for the Defect class.

NN and Predict were run on a 500MHz Pentium Illl\wi@le the other algorithms were run
on a Sun Sparcstation 10. The runtime for leareimgh classification algorithm was between
a few hundredths to a few tenths of a second, whéeclassification time for each piece was

in the order of milliseconds. Therefore these tiraes negligible with respect to the feature

16



computation time in the overall inspection proceBe industrial process we considered

allows for a maximum inspection time of 20 s, tfuiflling the inspection time constraint.

Table 1. Average accuracies

Discrim | Logdisc | Quadisc| NN Predict | c4.5 treg4.5 rule
CH 0.853 0.857 0.853 0.885 0.878 0.959 0.9p9
H1H2 | 0.855 0.928 0.316 0.84% 0.86¢4 0.933 0.933

o

Table 2. Total false negative (FN) and false positive (FP) errors

Discrim | Logdisc| Quadisd NN Predict c4.5tree c4les
FN| FP| FN| FP| FN FP | FN| FP| FN| FP| FN| FP| FN FP
CH 371 9| 36| 9| 31 1§ 3t 9 1b 25 6 |7
H1H2 | 26| 19| 14| 9| 4Q 17728 | 24| 3| 40| 13 8| 12 9

(9]
BN

Table 3. Valuesfor thet statisticsfor the CH dataset

Logdisc| Quadisc| NN Predict | c4.5 treec4.5 rules
Discrim | 1.00 0.00 1.00 0.46| 250 2.50
Logdisc 0.17 0.90 0.38 | 252 2.52
Quadisc 0.62 3.61 3.61
NN 0.49 2.53 2.53
Predict 2.67 2.67
c4.5 treg 0.00

Table4. Valuesfor thet statisticsfor the H1 H2 dataset

Logdisc| Quadisc| NN Predict | c4.5 treec4.5 ruleg
Discrim | 1.75 4.20 0.44 0.34 1.59 1.69

Logdisc 5.49 251 1.10 0.15 0.16

Quadisc 3.96 3.65 7.14 6.92
NN 0.34 1.59 1.69

Predict 0.84 0.86

c4.5 tree 0.00
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Table 1 shows the average accuracies of the dtz#h algorithms for both datasets.
Table 2 shows the total number of false negatiwk fafse positive errors summed over the
ten folds. False negatives are defective piecesai®classified as non-defective and false
positives are non-defective pieces that are clags#s defective. It is important to distinguish
between these two types of errors because the dathag derives from a false negative is
much higher than that deriving from a false positiVherefore, we should prefer an algorithm
that minimizes the number of false negatives.

In order to evaluate if the accuracy differencesveen algorithms are significant, we have
computed a 10-fold cross-validated paite@st for every pair of algorithms (see [1] for an
overview of statistical tests for the comparisommaichine learning algorithms).

This test is computed as follows. Given two aldoris A and B, let g (and respectively
pe”) be the observed proportion of test examples mssified by algorithm A (respectively
B) in trial i. If we assume that the 10 differen@®spa®-ps" are drawn independently from a

normal distribution, then we can apply Studetaist by computing the statistic

t=—_PON (10)
where n is the number of folds (10) apds
p==3 p¥ (12)
n n

i=1
In the null hypothesis, i.e. that A and B have #ane accuracy, this statistic has a
distribution with n-1 (9) degrees of freedom. If wensider a probability of 90%, then the

null hypothesis can be rejected if

18



[t) > 4000 =1.383 (12)

Table 3 shows the values of the statistic for thedataset, while table 4 shows the values
of the statistic for the H1 H2 dataset. The valtighe statistic for algorithms A and B can
be found at the crossing of line A with column BhelTnumbers in bold are those that
provide a probability of 90% or more of rejectitng thull hypothesis.

From these tables it can be seen that, for the &#sdt, the accuracy ranking of algorithms
is: C4.5 (rules and trees), NN, Predict, Logdisaadisc and Discrim. However, the accuracy
difference is significant only between C4.5 andtla#l other algorithms and between NN and
Quadisc.

On the H1 H2 dataset, the ranking of algorithm<i4.5 (rules and trees), Logdisc, Predict,
Discrim, NN and Quadisc. The accuracy differencesignificant only between the best
performing algorithms, C4.5 and Logdisc, and al ¢tthers apart from Predict.

When comparing the algorithm in terms of accuraegg, can conclude that, for both
datasets, the best overall accuracy has been elithyn C4.5 both for the case of trees and
rules. The comparison of machine learning and s$tedi techniques in terms of accuracy
shows that C4.5 performs better than statisticddrgues for the CH dataset, while on the H1
H2 dataset Logdisc and C4.5 are equivalent. Asbeaseen, the CH feature is very important
because it leads to more accurate classifierslifsystems with the exclusion of Logdisc and
Discrim. As regards the number of false negati@%5 yields the lowest number of them for
the CH dataset, while for the H1 H2 dataset theekiaumber is given by Predict.

As regards the computation time, it was not necgdsaperform a detailed comparison of
the various algorithms because the learning anskifieation times of all algorithms were

negligible if compared to the time required to canepthe features.
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These results show that machine learning toolsbeapreferred over k-nearest neighbour

and statistical classifiers for the application sidered.

5 Timecomplexity analysis

The approach presented can also be applied to difficeilt industrial inspection problems
requiring a larger number of examples in the trajnset, or to problems with tighter
constraints on inspection time. In order to solese problems, we must first distinguish
between two main time costs: an off-line cost, Wwhgthe time spent once for all to generate
the classifier, and an on-line cost, which is timet needed for classifying each produced
piece.

The off-line cost includes two main terms: the tirequired to pre-classify the training set
and that required to train the classifier from tf@ning set. In the absence of an automated
inspection process, teams of human experts maneilfiy a sample of the whole production.
In order to automate the inspection process, foh gaece it is necessary to compute the
features and to store their values together with éRpert’s classification value. The time
required to compute the features is negligible wétspect to human classification time.

As regards the time to train the classifier, ihegligible with respect to the time to pre-
classify the training set. This can be inferremhfrthe fact that it was negligible in our case,
where we had 317 examples, and from the fact tletitne complexity of all classifiers is
linear with respect to the number of examples entthining set except for NN for which it is
constant.

On-line costs also include two main terms: the tregiired to compute the visual features’
values for each piece, and the time required tothenclassifier. In our application, the first

term was largely the most relevant since compuitiegfeatures takes between 3.1 and 3.5 s.
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and running the classifier a few ms. Both termsigdependent from the number of examples
in the training set except for the classificatione for NN which is linear in the number of
examples. Thus the classification time may becaeteant only if NN is used.

Therefore, the limits to the number of exampleg ttzen be used for training are given by
the human classification time and by the on-liressification time if NN is used.

Similarly, if a tighter constraint on the inspectibme is given, the limits are given by the
time required to compute the features and by thknenclassification time if NN is used.

Another important issue is the possibility of chemgn the nature of defects. Over time, in
fact, it may happen that the type of defects chsrggeause of variations in the production
system. To this purpose, the performance of thssiflar must be monitored by manually
classifying a sample of the pieces produced. Wlmendassification errors overcome an
assigned threshold, the classifier must be upd&édll the learning algorithms, only NN is
an incremental algorithm where the new classiféar be obtained from the old one, while for
the others the learning process must be repeatedlever, as shown above, the learning time
for a few hundred examples is in the order of a femdredths of a second, and therefore re-

learning does not pose any real kind of limitatiothe detection system.

6 Related worksand comparison with the Statlog Project

Machine learning has been widely exploited for objgassification in computer vision.

Learning is often essential for defining an effeetclassifier in the case of unstructured
objects or shapes, which are difficult to modelkerms of geometric, topologic or other
metric features. Examples of the use of learningcomputer vision are, for instance,
recognition of hand gestures, landscape inspectimedical images analysis, and

appearance-based recognition [1,6,13,12]. Howetee, most comprehensive work
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concerning the use of learning for object clasatfan in computer vision is the StatLog
project [11]. StatLog includes several classificatalgorithms, covering machine learning,
neural and statistical techniques. The algorithmes ampared against several different
classification tasks, or datasets, nine of whichsgsis of classifying images (Dig44, KL,
Vehicle, Letter, Chrom, Satlm, Segm, Cut20, Cut?®).reported in the StatLog results in
[11], the ranking of classifiers in terms of errates varies with the image classification
task. As stated in the analysis of results stil[lifi], some of these tasks mainly address
classification of pixel areas, while others addretassification of derived features
computed from the pixel values. These tasks ang difflerent in nature, and this may be a
major reason for the different ranking of classdierror rates.

The NN classifier achieves on average the best este. However, one pitfall of the NN
method is the fact that it assigns all the variglilee same relevance, and this may be the
reason for the few exceptions (Vehicle and Segm)}hese cases, many other algorithms
outperform NN, including C4.5.

Quadisc achieves on average the best error ratethdse image datasets considered as
object recognition tasks (Dig44, KL, Vehicle, Lett€hrom), while it performs badly on
average on the image datasets considered as segimeasks (Satlm, Segm, Cut20, Cut50).

The machine learning algorithm C4.5 tends to dernates good performance on the
segmentation tasks (Segm, Cut20, Cut50) and incphat, it largely outperforms Quadisc on
the Cuts dataset. On the other datasets, C4.5 csmétgerage positions.

The application we considered in this paper cardladbe considered as solely object
recognition or solely segmentation: it can be ader®d object recognition since it uses
object-level features like the Hough transform, le/tdt the same time it can be regarded as

segmentation since objects are not segmented i@anady In this application, C4.5 achieves
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the best error rates for both feature sets, whil¥eHds an uneven behaviour, ranking in the
second position for the CH dataset and seconddatite H1 H2 dataset. This relative ranking
is the same as that of the StatLog’s Vehicle argirbgatasets, but not of the StatLog’s image
datasets on average. Instead, Quadisc assessiéisaigly worse performance, similar to that
of the other classifiers for the CH feature set draktically lower for the H1 H2 one. This

result is in good accordance with those from tteL9g segmentation datasets.

7 Conclusion

We have presented an application of machine legraimd statistics to the problem of
recognizing surface cracks on metallic pieces.riteoto learn from the images of the pieces,
we have identified a set of visual features forrabterizing each image that has been
expressly designed for the recognition of straigtgs and rectilinear shapes.

In order to test the effectiveness of these varitesures on classification, we have
considered two different sets, one containing fegtrom the Hough and the Correlated
Hough space, and another one containing featuves thhe Hough space only.

Various machine learning and statistical technicuege been applied to the problem. As
regards machine learning, we have employed anbaitrivalue learner, C4.5, a neural
network trainer, NeuralWorks Predict and a k-ndarmesghbour algorithm. As regards
statistical techniques, we have employed linegistec and quadratic discriminants.

The results of the experiments show that, of the t®ature sets, the one containing the
CHT leads to more accurate classifiers for all ieay methods apart from Logdisc and
Discrim, thus confirming the usefulness of highbgsialized operators for Computer Vision.

Among all systems, C4.5 had the best accuracyifisigntly higher than that of the other

systems on the CH dataset, while on the H1 H2 datasvas significantly higher only with
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respect to Discrim, Quadisc and NN. As regardsctimaputation time, the learning times of
all algorithms were comparable and they were ndaggf compared to the time required to
compute the features.

The accuracy results differ from those obtainedhim Statlog project, where NN was the
best classifier for images. This can be due tofdlce that NN treats (normalized) variables
with equal weight, while in the datasets considettesl relevance of the various variables
differs. Another major result of our experimentstie evidence that an attribute-value
machine learning tool like C4.5, designed for treatboth numeric and non-numeric
attributes, can perform better than statisticassifeers even on purely numeric datasets such
as those we have addressed in this paper.

The approach presented can also be applied to olijest recognition domains. In the case
that the object to be recognised has a linear shiue® the same visual primitives and
learning algorithms discussed in the paper canppdieal. In the case that the shape differs,
then different visual primitives must be used, #m&llearning algorithms re-tested in order to

re-identify the one with the best accuracy.
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