
2
Probabilistic Logic Programming

Languages

Various approaches have been proposed for combining logic programming
with probability theory. They can be broadly classified into two categories:
those based on the Distribution Semantics (DS) [Sato, 1995] and those that
follow a Knowledge Base Model Construction (KBMC) approach.

For languages in the first category, a probabilistic logic program without
function symbols defines a probability distribution over normal logic pro-
grams (termedworlds). To define the probability of a query, this distribution is
extended to a joint distribution of the query and the worlds and the probability
of the query is obtained from the joint distribution by marginalization, i.e.,
by summing out the worlds. For probabilistic logic programs with function
symbols, the definition is more complex, see Chapter 3.

The distribution over programs is defined by encoding random choices
for clauses. Each choice generates an alternative version of the clause and
the set of choices is associated with a probability distribution. The various
languages that follow the DS differ in how the choices are encoded. In all
languages, however, choices are independent from each other.

In the KBMC approach, instead, a probabilistic logic program is a com-
pact way of encoding a large graphical model, either a BN or MN. In the
KBMC approach, the semantics of a program is defined by the method for
building the graphical model from the program.

2.1 Languages with the Distribution Semantics

The languages following DS differ in how they encode choices for clauses,
and how the probabilities for these choices are stated. As will be shown in
Section 2.4, they all have the same expressive power. This fact shows that
the differences in the languages are syntactic, and also justifies speaking
of the DS.

41

42 Probabilistic Logic Programming Languages

2.1.1 Logic Programs with Annotated Disjunctions

In Logic Programs with Annotated Disjunctions (LPADs) [Vennekens et al.,
2004], the alternatives are expressed by means of annotated disjunctive heads
of clauses. An annotated disjunctive clause Ci has the form

hi1 : ⇧i1 ; . . . ; hini : ⇧ini – bi1, . . . , bimi

where hi1, . . . , hini are logical atoms, bi1, . . . , bimi are logical literals, and
⇧i1, . . . , ⇧ini are real numbers in the interval r0, 1s such that

∞ni
k“1⇧ik “ 1.

An LPAD is a finite set of annotated disjunctive clauses.
Each world is obtained by selecting one atom from the head of each

grounding of each annotated disjunctive clause.

Example 12 (Medical symptoms – LPAD). The following LPAD models the
appearance of medical symptoms as a consequence of disease. A person may
sneeze if he has the flu or if he has hay fever:

sneezingpXq : 0.7 ; null : 0.3– flupXq.
sneezingpXq : 0.8 ; null : 0.2– hay feverpXq.
flupbobq.
hay feverpbobq.

The first clause can be read as: if X has the flu, then X sneezes with prob-
ability 0.7 and nothing happens with probability 0.3. Similarly, the second
clause can be read as: ifX has hay fever, thenX sneezes with probability 0.8
and nothing happens with probability 0.2. Here, and for the other languages
based on the distribution semantics, the atom null does not appear in the
body of any clause and is used to represent an alternative in which no atom
is selected. It can also be omitted obtaining

sneezingpXq : 0.7– flupXq.
sneezingpXq : 0.8– hay feverpXq.
flupbobq.
hay feverpbobq.

As can be seen from the example, LPADs encode in a natural way programs
representing causal mechanisms: flu and hay fever are causes for sneezing,
which, however, is probabilistic, in the sense that it may or may not happen
even when the causes are present. The relationship between the DS, and
LPADs in particular, and causal reasoning is discussed in Section 2.8.

2.1 Languages with the Distribution Semantics 43

2.1.2 ProbLog

The design of ProbLog [De Raedt et al., 2007] was motivated by the desire to
make the simplest probabilistic extension of Prolog. In ProbLog, alternatives
are expressed by probabilistic facts of the form

⇧i :: fi

where ⇧i P r0, 1s and fi is an atom, meaning that each ground instantiation
fi✓ of fi is true with probability ⇧i and false with probability 1 ´ ⇧i. Each
world is obtained by selecting or rejecting each grounding of all probabilistic
facts.

Example 13 (Medical symptoms – ProbLog). Example 12 can be expressed
in ProbLog as:

sneezingpXq– flupXq,flu sneezingpXq.
sneezingpXq– hay feverpXq, hay fever sneezingpXq.
flupbobq.
hay feverpbobq.
0.7 :: flu sneezingpXq.
0.8 :: hay fever sneezingpXq.

2.1.3 Probabilistic Horn Abduction

Probabilistic Horn Abduction (PHA) [Poole, 1993b] and Independent Choice
Logic (ICL) [Poole, 1997] express alternatives by facts, called disjoint
statements, having the form

disjointprai1 : ⇧i1, . . . , ain : ⇧inisq.

where each aik is a logical atom and each ⇧ik a number in r0, 1s such that∞ni
k“1⇧ik “ 1. Such a statement can be interpreted in terms of its ground

instantiations: for each substitution ✓ grounding the atoms of the statement,
the aik✓s are random alternatives and aik✓ is true with probability ⇧ik. Each
world is obtained by selecting one atom from each grounding of each disjoint
statement in the program. In practice, each ground instantiation of a disjoint
statement corresponds to a random variable with as many values as the
alternatives in the statement.

44 Probabilistic Logic Programming Languages

Example 14 (Medical symptoms – ICL). Example 12 can be expressed in
ICL as:

sneezingpXq– flupXq,flu sneezingpXq.
sneezingpXq– hay feverpXq, hay fever sneezingpXq.
flupbobq.
hay feverpbobq.

disjointprflu sneezingpXq : 0.7, null : 0.3sq.
disjointprhay fever sneezingpXq : 0.8, null : 0.2sq.

In ICL, LPADs, and ProbLog, each grounding of a probabilistic clause is
associated with a random variable with as many values as alternatives/head
disjuncts for ICL and LPADs and with two values for ProbLog. The random
variables corresponding to different instantiations of a probabilistic clause are
independent and identically distributed (IID).

2.1.4 PRISM

The language PRISM [Sato and Kameya, 1997] is similar to PHA/ICL but
introduces random facts via the predicatemsw{3 (multi-switch):

mswpSwitchName,TrialId ,Valueq.

The first argument of this predicate is a random switch name, a term repre-
senting a set of discrete random variables; the second argument is an integer,
the trial id; and the third argument represents a value for that variable. The
set of possible values for a switch is defined by a fact of the form

valuespSwitchName, rv1, . . . , vnsq.

where SwitchName is again a term representing a switch name and each
vi is a term. Each ground pair pSwitchName,TrialIdq represents a distinct
random variable and the set of random variables associated with the same
switch are IID.

The probability distribution over the values of the random variables
associated with SwitchName is defined by a directive of the form

– set swpSwitchName, r⇧1, . . . ,⇧nsq.

where pi is the probability that variable SwitchName takes value vi. Each
world is obtained by selecting one value for each trial id of each random
switch.

2.2 The Distribution Semantics for Programs Without Function Symbols 45

Example 15 (Coin tosses – PRISM). The modeling of coin tosses shows dif-
ferences in how the various PLP languages represent IID random variables.
Suppose that coin c1 is known not to be fair, but that all tosses of c1 have the
same probabilities of outcomes – in other words, each toss of c1 is taken from
a family of IID random variables. This can be represented in PRISM as

valuespc1, rhead, tailsq.
– set swpc1, r0.4, 0.6sq

Different tosses of c1 can then be identified using the trial id argument of
msw{3.

In PHA/ICL and many other PLP languages, each ground instantiation of
a disjoint/1 statement represents a distinct random variable, so that IID ran-
dom variables need to be represented through the statement’s instantiation
patterns: e.g.,

disjointprcoinpc1,TossNumber , headq : 0.4,
coinpc1,TossNumber , tailq : 0.6sq.

In practice, the PRISM system accepts anmsw{2 predicate whose atoms
do not contain the trial id and for which each occurrence in a program is
considered as being associated with a different new variable.

Example 16 (Medical symptoms – PRISM). Example 14 can be encoded in
PRISM as:

sneezingpXq– flupXq,mswpflu sneezingpXq, 1q.
sneezingpXq– hay feverpXq,mswphay fever sneezingpXq, 1q.
flupbobq.
hay feverpbobq.

valuespflu sneezingp Xq, r1, 0sq.
valuesphay fever sneezingp Xq, r1, 0sq.
– set swpflu sneezingp Xq, r0.7, 0.3sq.
– set swphay fever sneezingp Xq, r0.8, 0.2sq.

2.2 The Distribution Semantics for Programs Without
Function Symbols

We present first the DS for the case of ProbLog as it is the language with
the simplest syntax. A ProbLog program P is composed by a set of normal

46 Probabilistic Logic Programming Languages

rules R and a set F of probabilistic facts. Each probabilistic fact is of the
form ⇧i :: fi where ⇧i P r0, 1s and fi is an atom1, meaning that each ground
instantiation fi✓ of fi is true with probability ⇧i and false with probability
1 ´ ⇧i. Each world is obtained by selecting or rejecting each grounding of
each probabilistic fact.

An atomic choice indicates whether grounding f✓ of a probabilistic fact
F “ p :: f is selected or not. It is represented with the triple pf, ✓, kq where
k P t0, 1u and k “ 1 means that the fact is selected, k “ 0 that it is not. A
set  of atomic choices is consistent if it does not contain two atomic choices
pf, ✓, kq and pf, ✓, jq with k ‰ j (only one alternative is selected for a ground
probabilistic fact). The function consistentpq returns true if  is consistent.
A composite choice  is a consistent set of atomic choices. The probability of
composite choice  is

P pq “

π

pfi,✓,1qP

⇧i

π

pfi,✓,0qP

1 ´ ⇧i.

A selection � is a total composite choice, i.e., contains one atomic choice for
every grounding of every probabilistic fact. A world w� is a logic program
that is identified by a selection �. The world w� is formed by including the
atom corresponding to each atomic choice pf, ✓, 1q of �.

The probability of a world w� is P pw�q “ P p�q. Since in this section we
are assuming programs without function symbols, the set of groundings of
each probabilistic fact is finite, and so is the set of worlds WP . Accordingly,
for a ProbLog program P , WP “ tw1, . . . , wmu. Moreover, P pwq is a
distribution over worlds:

∞
wPWP

P pwq “ 1. We call sound a program
for which every world has a two-valued WFM. We consider here sound
programs, for non-sound ones, see Section 2.9.

Let q be a query in the form of a ground atom. We define the conditional
probability of q given a world w as: P pq|wq “ 1 if q is true in w and 0
otherwise. Since the program is sound, q can be only true or false in a world.
The probability of q can thus be computed by summing out the worlds from
the joint distribution of the query and the worlds:

P pqq “

ÿ

w

P pq, wq “

ÿ

w

P pq|wqP pwq “

ÿ

w(q

P pwq. (2.1)

This formula can also be used for computing the probability of a conjunction
q1, . . . , qn of ground atoms since the truth of a conjunction of ground atoms

1With an abuse of notation, sometimes we use F to indicate the set containing the atoms
fis. The meaning of F will be clear from the context.

2.2 The Distribution Semantics for Programs Without Function Symbols 47

in a world is well defined. So we can compute the conditional probability
of a query q given evidence e in the form of a conjunction of ground atoms
e1, . . . , em as

P pq|eq “
P pq, eq

P peq
(2.2)

We can also assign a probability to a query q by defining a probability space.
SinceWP is finite, then pWP ,PpWPqq is a measurable space. For an element
! P PpWPq, define µp!q as

µp!q “

ÿ

wP!

P pwq

with the probability of a world P pwq defined as above. Then it’s easy to see
that pWP ,PpWPq, µq is a finitely additive probability space.

Given a ground atom q, define the function Q : WP Ñ t0, 1u as

Qpwq “

"
1 if w (q
0 otherwise (2.3)

Since the set of events is the powerset, then Q´1
p�q P PpWPq for all

� Ñ t0, 1u and Q is a random variable. The distribution of Q is defined by
P pQ “ 1q (P pQ “ 0q is given by 1´P pQ “ 1q) and we indicate P pQ “ 1q

with P pqq.
We can now compute P pqq as

P pqq “ µpQ´1
pt1uqq “ µptw|w P WP , w (quq “

ÿ

w(q

P pwq

obtaining the same formula as Equation (2.1).
The distribution over worlds also induces a distribution over interpreta-

tions: given an interpretation I , we can define the conditional probability of
I given a world w as: P pI|wq “ 1 is I is the model of w (I (w) and 0
otherwise. The distribution over interpretations is then given by a formula
similar to Equation (2.1):

P pIq “

ÿ

w

P pI, wq “

ÿ

w

P pI|wqP pwq “

ÿ

I(w

P pwq (2.4)

We call the interpretations I for which P pIq ° 0 possible models because
they are models for at least one world.

48 Probabilistic Logic Programming Languages

Now define the function I : WP Ñ t0, 1u as

IpIq “

"
1 if I (w
0 otherwise (2.5)

I´1
p�q P PpWPq for all � Ñ t0, 1u so I is a random variable for probability

space pWP ,PpWPq, µq. The distribution of I is defined by P pI “ 1q and we
indicate P pI “ 1q with P pIq.

We can now compute P pIq as

P pIq “ µpI´1
pt1uqq “ µptw|w P WP , I (wuq “

ÿ

I(w

P pwq

obtaining the same formula as Equation (2.4).
The probability of a query q can be obtained from the distribution over

interpretations by defining the conditional probability of q given an interpre-
tation I as P pq|Iq “ 1 if I (q and 0 otherwise and by marginalizing the
interpretations obtaining

P pqq “

ÿ

I

P pq, Iq “

ÿ

I

P pq|IqP pIq “

ÿ

I(q

P pIq “

ÿ

I(q,I(w

P pwq (2.6)

So the probability of a query can be obtained by summing the probability of
the possible models where the query is true.

Example 17 (Medical symptoms – worlds – ProbLog). Consider the
program of Example 13. The program has four worlds

w1 “ t w2 “ t

flu sneezingpbobq.
hay fever sneezingpbobq. hay fever sneezingpbobq.

u u

P pw1q “ 0.7 ˆ 0.8 P pw2q “ 0.3 ˆ 0.8
w3 “ t w4 “ t

flu sneezingpbobq.
u u

P pw3q “ 0.7 ˆ 0.2 P pw4q “ 0.3 ˆ 0.2

The query sneezingpbobq is true in three worlds and its probability

P psneezingpbobqq “ 0.7 ˆ 0.8 ` 0.3 ˆ 0.8 ` 0.7 ˆ 0.2 “ 0.94.

2.2 The Distribution Semantics for Programs Without Function Symbols 49

Note that the contributions from the two clauses are combined disjunctively.
The probability of the query is thus computed using the rule giving the
probability of the disjunction of two independent Boolean random variables:

P pa _ bq “ P paq ` P pbq ´ P paqP pbq “ 1 ´ p1 ´ P paqqp1 ´ P pbqq.

In our case, P psneezingpbobqq “ 0.7 ` 0.8 ´ 0.7 ¨ 0.8 “ 0.94.

We now give the semantics for LPADs. A clause

Ci “ hi1 : ⇧i1 ; . . . ; hini : ⇧ini – bi1, . . . , bimi

stands for a set of probabilistic clauses, one for each ground instantiation Ci✓
of Ci. Each ground probabilistic clause represents a choice among ni normal
clauses, each of the form

hik – bi1, . . . , bimi

for k “ 1 . . . , ni. Moreover, another clause

null– bi1, . . . , bimi

is implicitly encoded which is associated with probability⇧0 “ 1´
∞ni

k“1⇧k.
So for LPAD P an atomic choice is the selection of a head atom for a
grounding Ci✓j of a probabilistic clause Ci, including the atom null. An
atomic choice is represented in this case by the triple pCi, ✓j , kq, where ✓j is
a grounding substitution and k P t0, 1, . . . , niu. An atomic choice represents
an equation of the form Xij “ k where Xij is a random variable associated
with Ci✓j . The definition of consistent set of atomic choices, of composite
choices, and of the probability of a composite choice is the same as for
ProbLog. Again, a selection � is a total composite choice (one atomic choice
for every grounding of each probabilistic clause). A selection � identifies
a logic program w� (a world) that contains the normal clauses obtained by
selecting head atom hik✓ for each atomic choice pCi, ✓, kq:

w� “ t phik – bi1, . . . , bimiq✓|pCi, ✓, kq P �,
Ci “ hi1 : ⇧i1 ; . . . ; hini : ⇧ini – bi1, . . . , bimi , Ci P Pu

As for ProbLog, the probability of w� is P pw�q “ P p�q “
±

pCi,✓j ,kqP� ⇧ik,
the set of worlds WP “ tw1, . . . , wmu is finite, and P pwq is a distribution
over worlds.

If q is a query, we can define P pq|wq as for ProbLog and again the
probability of q is given by Equation (2.1)

50 Probabilistic Logic Programming Languages

Example 18 (Medical symptoms – worlds – LPAD). The LPAD of Exam-
ple 12 has four worlds:

w1 “ t

sneezingpbobq – flupbobq.
sneezingpbobq – hay feverpbobq.
flupbobq. hay feverpbobq.

u

P pw1q “ 0.7 ˆ 0.8

w2 “ t

null– flupbobq.
sneezingpbobq – hay feverpbobq.
flupbobq. hay feverpbobq.

u

P pw2q “ 0.3 ˆ 0.8

w3 “ t

sneezingpbobq – flupbobq.
null– hay feverpbobq.
flupbobq. hay feverpbobq.

u

P pw3q “ 0.7 ˆ 0.2

w4 “ t

null– flupbobq.
null– hay feverpbobq.
flupbobq. hay feverpbobq.

u

P pw4q “ 0.3 ˆ 0.2

sneezingpbobq is true in three worlds and its probability is

P psneezingpbobqq “ 0.7 ˆ 0.8 ` 0.3 ˆ 0.8 ` 0.7 ˆ 0.2 “ 0.94

2.3 Examples of Programs

In this section, we provide some examples of programs to better illustrate the
syntax and the semantics.

2.3 Examples of Programs 51

Example 19 (Detailed medical symptoms – LPAD). The following LPAD2

models a program that describe medical symptoms in a way that is slightly
more elaborated than Example 12:

strong sneezingpXq : 0.3 ;moderate sneezingpXq : 0.5–
flupXq.

strong sneezingpXq : 0.2 ;moderate sneezingpXq : 0.6–
hay feverpXq.

flupbobq.
hay feverpbobq.

Here the clauses have three alternatives in the head of which the
one associated with atom null is left implicit. This program has nine
worlds, the query strong sneezingpbobq is true in five of them, and
P pstrong sneezingpbobqq “ 0.44.

Example 20 (Coin – LPAD). The coin example of [Vennekens et al., 2004]
is represented as3:

headspCoinq : 1{2 ; tailspCoinq : 1{2–

tosspCoinq,„biasedpCoinq.
headspCoinq : 0.6 ; tailspCoinq : 0.4–

tosspCoinq, biasedpCoinq.
fairpCoinq : 0.9 ; biasedpCoinq : 0.1.
tosspcoinq.

The first clause states that, if we toss a coin that is not biased, it has equal
probability of landing heads and tails. The second states that, if the coin is
biased, it has a slightly higher probability of landing heads. The third states
that the coin is fair with probability 0.9 and biased with probability 0.1 and
the last clause states that we toss the coin with certainty. This program has
eight worlds, the query headspcoinq is true in four of them, and its probability
is 0.51.

Example 21 (Eruption – LPAD). Consider this LPAD4 from Riguzzi and
Di Mauro [2012] that is inspired by the morphological characteristics of the
Italian island of Stromboli:

2http://cplint.eu/e/sneezing.pl
3http://cplint.eu/e/coin.pl
4http://cplint.eu/e/eruption.pl

http://cplint.eu/e/sneezing.pl
http://cplint.eu/e/coin.pl
http://cplint.eu/e/eruption.pl

52 Probabilistic Logic Programming Languages

C1 “ eruption : 0.6 ; earthquake : 0.3 :- sudden energy release,
fault rupturepXq.

C2 “ sudden energy release : 0.7.
C3 “ fault rupturepsouthwest northeastq.
C4 “ fault rupturepeast westq.

The island of Stromboli is located at the intersection of two geological faults,
one in the southwest–northeast direction, the other in the east–west direction,
and contains one of the three volcanoes that are active in Italy. This program
models the possibility that an eruption or an earthquake occurs at Stromboli.
If there is a sudden energy release under the island and there is a fault
rupture, then there can be an eruption of the volcano on the island with
probability 0.6 or an earthquake in the area with probability 0.3. The energy
release occurs with probability 0.7 and we are sure that ruptures occur in
both faults.

Clause C1 has two groundings, C1✓1 with

✓1 “ tX{southwest northeastu

and C1✓2 with
✓2 “ tX{east westu,

while clause C2 has a single grounding C2H. Since C1 has three head atoms
and C2 two, the program has 3 ˆ 3 ˆ 2 worlds. The query eruption is true
in five of them and its probability is P peruptionq “ 0.6 ¨ 0.6 ¨ 0.7` 0.6 ¨ 0.3 ¨

0.7 ` 0.6 ¨ 0.1 ¨ 0.7 ` 0.3 ¨ 0.6 ¨ 0.7 ` 0.1 ¨ 0.6 ¨ 0.7 “ 0.588.

Example 22 (Monty Hall puzzle – LPAD). The Monty Hall puzzle
[Baral et al., 2009] refers to the TV game show hosted by Monty Hall in
which a player has to choose which of three closed doors to open. Behind one
door, there is a prize, while behind the other two, there is nothing. Once the
player has selected the door, Monty Hall opens one of the remaining closed
doors which does not contain the prize, and then he asks the player if he
would like to change his door with the other closed door or not. The problem
of this game is to determine whether the player should switch. The following
program provides a solution5. The prize is behind one of the three doors with
the same probability:

prizep1q : 1{3 ; prizep2q : 1{3 ; prizep3q : 1{3.
The player has selected door 1:

selectedp1q.

5http://cplint.eu/e/monty.swinb

http://cplint.eu/e/monty.swinb

2.3 Examples of Programs 53

Monty opens door 2 with probability 0.5 and door 3 with probability 0.5 if the
prize is behind door 1:

open doorp2q : 0.5 ; open doorp3q : 0.5– prizep1q.
Monty opens door 2 if the prize is behind door 3:

open doorp2q– prizep3q.
Monty opens door 3 if the prize is behind door 2:

open doorp3q– prizep2q.
The player keeps his choice and wins if he has selected a door with the prize:

win keep– prizep1q.
The player switches and wins if the prize is behind the door that he has not
selected and that Monty did not open:

win switch– prizep2q, open doorp3q.
win switch– prizep3q, open doorp2q.

Querying win keep and win switch we obtain probability 1/3 and 2/3
respectively, so the player should switch. Note that if you change the proba-
bility distribution of Monty selecting a door to open when the prize is behind
the door selected by the player, then the probability of winning by switching
remains the same.

Example 23 (Three-prisoner puzzle – LPAD). The following program6 from
[Riguzzi et al., 2016a] encodes the three-prisoner puzzle. In Grünwald and
Halpern [2003], the problem is described as:

Of three prisoners a, b, and c, two are to be executed, but a does
not know which. Thus, a thinks that the probability that i will be
executed is 2/3 for i P ta, b, cu. He says to the jailer, “Since
either b or c is certainly going to be executed, you will give me
no information about my own chances if you give me the name of
one man, either b or c, who is going to be executed.” But then, no
matter what the jailer says, naive conditioning leads a to believe
that his chance of execution went down from 2/3 to 1/2.

Each prisoner is safe with probability 1/3:
safepaq : 1{3 ; safepbq : 1{3 ; safepcq : 1{3.

If a is safe, the jailer tells that one of the other prisoners will be executed
uniformly at random:

tell executedpbq : 1{2 ; tell executedpcq : 1{2– safepaq.
Otherwise, he tells that the only unsafe prisoner will be executed:

6http://cplint.eu/e/jail.swinb

http://cplint.eu/e/jail.swinb

54 Probabilistic Logic Programming Languages

tell executedpbq– safepcq.
tell executedpcq– safepbq.

The jailer speaks if he tells that somebody will be executed:
tell– tell executedp q.

a is safe after the jailer utterance if he is safe and the jailer speaks:
safe after tell : ´safepaq, tell.

By computing the probability of safepaq and safe after tell, we get the same
probability of 1/3, so the jailer utterance does not change the probability of a
of being safe.

We can see this also by considering conditional probabilities: the proba-
bility of safepaq given the jailer utterance tell is

P psafepaq|tellq “
P psafepaq, tellq

P ptellq
“

P psafe after tellq

P ptellq
“

1{3

1
“ 1{3

because the probability of tell is 1.

Example 24 (Russian roulette with two guns – LPAD). The following
example7 models a Russian roulette game with two guns [Baral et al., 2009].
The death of the player is caused with probability 1/6 by triggering the left
gun and similarly for the right gun:

death : 1{6– pull triggerpleft gunq.
death : 1{6– pull triggerpright gunq.
pull triggerpleft gunq.
pull triggerpright gunq.

Querying the probability of death we gent the probability of the player of
dying.

Example 25 (Mendelian rules of inheritance – LPAD). Blockeel [2004]
presents a program8 that encodes the Mendelian rules of inheritance of
the color of pea plants. The color of a pea plant is determined by a gene
that exists in two forms (alleles), purple, p, and white, w. Each plant
has two alleles for the color gene that reside on a couple of chromo-
somes. cg(X,N,A) indicates that plant X has allele A on chromosome N.
The program is:

colorpX,whiteq– cgpX, 1, wq, cgpX, 2, wq.
colorpX, purpleq– cgpX, A, pq.

7http://cplint.eu/e/trigger.pl
8http://cplint.eu/e/mendel.pl

http://cplint.eu/e/trigger.pl
http://cplint.eu/e/mendel.pl

2.3 Examples of Programs 55

cgpX, 1, Aq : 0.5 ; cgpX, 1, Bq : 0.5–
motherpY,Xq, cgpY, 1, Aq, cgpY, 2, Bq.

cgpX, 2, Aq : 0.5 ; cgpX, 2, Bq : 0.5–
fatherpY,Xq, cgpY, 1, Aq, cgpY, 2, Bq.

motherpm, cq. fatherpf, cq.
cgpm, 1, wq. cgpm, 2, wq. cgpf, 1, pq. cgpf, 2, wq.

The facts of the program express that c is the offspring of m and f and
that the alleles of m are ww and of f are pw. The disjunctive rules
encode the fact that an offspring inherits the allele on chromosome 1 from
the mother and the allele on chromosome 2 from the father. In particular,
each allele of the parent has a probability of 50% of being transmitted.
The definite clauses for color express the fact that the color of a plant is
purple if at least one of the alleles is p, i.e., that the p allele is domi-
nant. In a similar way, the rules of blood type inheritance can be written
in an LPAD9.

Example 26 (Path probability – LPAD). An interesting application of
PLP under the DS is the computation of the probability of a path
between two nodes in a graph in which the presence of each edge is
probabilistic10:

pathpX,Xq.
pathpX,Y q– pathpX,Zq, edgepZ, Y q.
edgepa, bq : 0.3. edgepb, cq : 0.2. edgepa, cq : 0.6.

This program, coded in ProbLog, was used in [De Raedt et al., 2007] for
computing the probability that two biological concepts are related in the
BIOMINE network [Sevon et al., 2006].

PLP under the DS can encode BNs Vennekens et al. [2004]: each value
of each random variable is encoded by a ground atom, each row of each CPT
is encoded by a rule with the value of parents in the body and the probability
distribution of values of the child in the head.

Example 27 (Alarm BN – LPAD). For example, the BN of Example 10
that we repeat in Figure 2.1 for readability can be encoded with the
program11

9http://cplint.eu/e/bloodtype.pl
10http://cplint.eu/e/path.swinb
11http://cplint.eu/e/alarm.pl

http://cplint.eu/e/bloodtype.pl
http://cplint.eu/e/path.swinb
http://cplint.eu/e/alarm.pl

56 Probabilistic Logic Programming Languages

Figure 2.1 Example of a BN.

burgptq : 0.1 ; burgpf q : 0.9.
earthquakeptq : 0.2 ; earthquakepf q : 0.8.
alarmptq– burgptq, earthqptq.
alarmptq : 0.8 ; alarmpf q : 0.2– burgptq, earthqpf q.
alarmptq : 0.8 ; alarmpf q : 0.2– burgpf q, earthqptq.
alarmptq : 0.1 ; alarmpf q : 0.9– burgpf q, earthqpf q.
callptq : 0.9 ; callpf q : 0.1– alarmptq.
callptq : 0.05 ; callpf q : 0.95– alarmpf q.

2.4 Equivalence of Expressive Power

To show that all these languages have the same expressive power, we
discuss transformations among probabilistic constructs from the various
languages.

The mapping between PHA/ICL and PRISM translates each PHA/ICL
disjoint statement to a multi-switch declaration and vice versa in the
obvious way. The mapping from PHA/ICL and PRISM to LPADs trans-
lates each disjoint statement/multi-switch declaration to a disjunctive
LPAD fact.

The translation from an LPAD into PHA/ICL (first shown in [Vennekens
and Verbaeten, 2003]) rewrites each clause Ci with v variables X

h1 : ⇧1 ; . . . ; hn : ⇧n–B.

into PHA/ICL by adding n new predicates tchoicei1{v, . . . , choicein{vu and
a disjoint statement:

2.4 Equivalence of Expressive Power 57

h1–B, choicei1pXq.
...
hn–B, choiceinpXq.

disjointprchoicei1pXq : ⇧1, . . . , choiceinpXq : ⇧nsq.

For instance, the first clause of the medical symptoms LPAD of Example 19
is translated to

strong sneezingpXq– flupXq, choice11pXq.
moderate sneezingpXq : 0.5– flupXq, choice12pXq.
disjointprchoice11pXq : 0.3, choice12pXq : 0.5, choice13 : 0.2sq.

where the clause null– flupXq, choice13. is omitted since null does not
appear in the body of any clause.

Finally, as shown in [De Raedt et al., 2008], to convert LPADs into
ProbLog, each clause Ci with v variables X

h1 : ⇧1 ; . . . ; hn : ⇧n–B.

is translated into ProbLog by adding n ´ 1 probabilistic facts for predicates
tfi1{v, . . . , fin{vu:

h1–B, fi1pXq.
h2–B,„fi1pXq, fi2pXq.
...
hn–B,„fi1pXq, . . . ,„fin´1pXq.

⇡1 :: fi1pXq.
...
⇡n´1 :: fin´1pXq.

where
⇡1 “ ⇧1

⇡2 “
⇧2

1´⇡1

⇡3 “
⇧3

p1´⇡1qp1´⇡2q

. . .

In general

⇡i “
⇧i±i´1

j“1p1 ´ ⇡jq
.

58 Probabilistic Logic Programming Languages

Note that while the translation into ProbLog introduces negation, the intro-
duced negation involves only probabilistic facts, and so the transformed
program will have a two-valued model whenever the original program does.

For instance, the first clause of the medical symptoms LPAD of
Example 19 is translated to

strong sneezingpXq– flupXq, f11pXq.
moderate sneezingpXq : 0.5– flupXq,„f11pXq, f12pXq.
0.3 :: f11pXq.
0.71428571428 :: f12pXq.

2.5 Translation to Bayesian Networks

We discuss here how an acyclic ground LPAD can be translated to a BN.
Let us first define the acyclic property for LPADs, extending Definition 4.
An LPAD is acyclic if an integer level can be assigned to each ground atom
so that the level of each atom in the head of each ground rule is the same and
is higher than the level of each atom in the body.

An acyclic ground LPAD P can be translated to a BN �pPq [Vennekens
et al., 2004]. �pPq is built by associating each atom a in BP with a binary
variable a with values true (1) and false (0). Moreover, for each rule Ci of the
following form

h1 : ⇧1 ; . . . ; hn : ⇧n– b1, . . . bm,„c1. . . . ,„cl
in groundpPq, we add a new variable chi (for “choice for rule Ci”) to �pPq.
chi has b1, . . . , bm, c1, . . . , cl as parents. The values for chi are h1, . . ., hn
and null, corresponding to the head atoms. The CPT of chi is

. . . b1 “ 1, . . . , bm “ 1, c1 “ 0, . . . , cl “ 0 . . .
chi “ h1 0.0 ⇧1 0.0

. . .
chn “ hn 0.0 ⇧n 0.0
chi “ null 1.0 1 ´

∞n
i“1 ⇧i 1.0

that can be expressed as

P pchi|b1, . . . , clq “

$
’’&

’’%

⇧k if chi “ hk, bi “ 1, . . . , cl “ 0
1 ´

∞n
j“1 ⇧j if chi “ null, bi “ 1, . . . , cl “ 0

1 if chi “ null, pbi “ 1, . . . , cl “ 0q

0 otherwise

(2.7)

2.5 Translation to Bayesian Networks 59

If the body is empty, the CPT for chi is

chi “ h1 ⇧1

. . .
chn “ hn ⇧n

chi “ null 1 ´
∞n

i“1 ⇧i

Moreover, for each variable a corresponding to atom a P BP , the parents are
all the variables chi of rules Ci that have a in the head. The CPT for a is the
following deterministic table:

At least one parent equal to a Remaining columns
a “ 1 1.0 0.0
a “ 0 0.0 1.0

encoding the function

a “ fpchaq “

"
1 if Dchi P cha : chi “ a
0 otherwise

where cha are the parents of a. Note that in order to convert an LPAD
containing variables into a BN, its grounding must be generated.

Example 28 (LPAD to BN). Consider the following LPAD P:
C1 “ a1 : 0.4 ; a2 : 0.3.
C2 “ a2 : 0.1 ; a3 : 0.2.
C3 “ a4 : 0.6 ; a5 : 0.4– a1.
C4 “ a5 : 0.4– a2, a3.
C5 “ a6 : 0.3 ; a7 : 0.2– a2, a5.

Its corresponding network �pPq is shown in Figure 1.7, where the CPT for
a2 and ch5 are shown in Tables 2.1 and 2.2 respectively.

Table 2.1 Conditional probability table for a2

ch1, ch2 a1, a2 a1, a3 a2, a2 a2, a3

a2 “ 1 1.0 0.0 1.0 1.0
a2 “ 0 0.0 1.0 0.0 0.0

Table 2.2 Conditional probability table for ch5

a2, a5 1,1 1,0 0,1 0,0
ch5 “ x6 0.3 0.0 0.0 0.0
ch5 “ x7 0.2 0.0 0.0 0.0
ch5 “ null 0.5 1.0 1.0 1.0

60 Probabilistic Logic Programming Languages

Figure 2.2 BN �pPq equivalent to the program of Example 28.

An alternative translation �pPq for a ground program P is built by includ-
ing random variables a for each atom a in BP and chi for each clause Ci as
for �pPq. Moreover, �pPq includes the Boolean random variable bodyi and
the random variable Xi with values h1, . . ., hn and null for each clause Ci.

The parents of bodyi are b1, . . . , bm, and c1, . . . , cl and its CPT encodes
the deterministic AND Boolean function:

. . . b1 “ 1, . . . , bm “ 1, c1 “ 0, . . . , cl “ 0 . . .
bodyi “ 0 1.0 0.0 1.0
bodyi “ 1 0.0 1.0 0.0

If the body is empty, the CPT makes bodyi surely true

bodyi “ 0 0.0
bodyi “ 1 1.0

Xi has no parents and has the CPT

chi “ h1 ⇧1

. . .
chi “ hn ⇧n

chi “ null 1 ´
∞n

i“1 ⇧i

chi has Xi and bodyi as parents with the deterministic CPT

bodyi,Xi 0, h1 . . . 0, hn 0, null 1, h1 . . . 1, hn 1, null
chi “ h1 0.0 . . . 0.0 0.0 1.0 . . . 0.0 0.0

. . .
chi “ hn 0.0 . . . 0.0 0.0 0.0 . . . 1.0 0.0
chi “ null 1.0 . . . 1.0 1.0 0.0 . . . 0.0 1.0

2.5 Translation to Bayesian Networks 61

Figure 2.3 Portion of �pPq relative to a clause CI .

encoding the function

chi “ fpbodyi,Xiq “

"
Xi if bodyi “ 1

null if bodyi “ 0

The parents of each variable a in �pPq are the variables chi of rules Ci that
have a in the head as for �pPq, with the same CPT as in �pPq.

The portion of �pPq relative to a clause Ci is shown in Figure 2.3.
If we compute P pchi|b1, . . . , bm, c1, . . . , clq by marginalizing

P pchi, bodyi,Xi|b1, . . . , bm, c1, . . . , clq

we can see that we obtain the same dependency as in �pPq:

P pchi|b1, . . . , clq “

“

ÿ

xi

ÿ

bodyi

P pchi, bodyi, xi|b1, . . . , clq

“

ÿ

xi

ÿ

bodyi

P pchi|bodyi, xiqP pxiqP pbodyi|b1, . . . , clq

“

ÿ

xi

P pxiq

ÿ

bodyi

P pchi|bodyi, xiqP pbodyi|b1, . . . , clq

“

ÿ

xi

P pxiq

ÿ

bodyi

P pchi|bodyi, xiq

$
&

%

1 if bodyi “ 1, b1 “ 1, . . . , cl “ 0

1 if bodyi “ 0, pb1 “ 1, . . . , cl “ 0q

0 otherwise

“

ÿ

xi

P pxiq

ÿ

bodyi

$
&

%

1 if chi “ xi, bodyi “ 1, b1 “ 1, . . . , cl “ 0

1 if chi “ null, bodyi “ 0, pb1 “ 1, . . . , cl “ 0q

0 otherwise

62 Probabilistic Logic Programming Languages

Figure 2.4 BN �pPq equivalent to the program of Example 28.

“
∞

xi
P pxiq

$
&

%

1 if chi “ xi, b1 “ 1, . . . , cl “ 0

1 if chi “ null, pb1 “ 1, . . . , cl “ 0q

0 otherwise

“

$
’’&

’’%

⇧k if chi “ hk, bi “ 1, . . . , cl “ 0

1 ´
∞n

j“1 ⇧j if chi “ null, bi “ 1, . . . , cl “ 0

1 if chi “ null, pbi “ 1, . . . , cl “ 0q

0 otherwise

which is the same as Equation (2.7).
From Figure 2.3 and using d-separation (see Definition 17), we can see

that the Xi variables are all pairwise unconditionally independent as between
every couple there is the collider Xi Ñ chi – bodyi.

Figure 2.4 shows �pPq for Example 28.

2.6 Generality of the Distribution Semantics

The assumption of independence of the random variables associated with
ground clauses may seem restrictive. However, any probabilistic relationship
between Boolean random variables that can be represented with a BN can be

2.6 Generality of the Distribution Semantics 63

Figure 2.5 BN representing the dependency between apiq and bpiq.

modeled in this way. For example, suppose you want to model a general
dependency between the ground atoms apiq and bpiq regarding predicates a{1

and b{1 and constant i. This dependency can be represented with the BN of
Figure 2.5.

The joint probability distribution P papiq, bpiqq over the two Boolean
random variables apiq and bpiq is

P p0, 0q “ p1 ´ p1qp1 ´ p2q

P p0, 1q “ p1 ´ p1qpp2q

P p1, 0q “ p1p1 ´ p3q

P p1, 1q “ p1p3

This dependency can be modeled with the following LPAD P:
C1 “ apiq : p1
C2 “ bpXq : p2– apXq

C3 “ bpXq : p3– „apXq

We can associate Boolean random variables X1 with C1, X2, with C2tX{iu,
and X3 with C3tX{iu, where X1, X2, and X3 are mutually independent.
These three random variables generate eight worlds. apiq ^ bpiq for
example is true in the worlds

w1 “ H, w2 “ tbpiq– apiqu

whose probabilities are

P 1
pw1q “ p1 ´ p1qp1 ´ p2qp1 ´ p3q

P 1
pw2q “ p1 ´ p1qp1 ´ p2qp3

so

P 1
p apiq, bpiqq “ p1´p1qp1´p2qp1´p3q`p1´p1qp1´p2qp3 “ P p0, 0q.

We can prove similarly that the distributions P and P 1 coincide for all joint
states of apiq and bpiq.

64 Probabilistic Logic Programming Languages

Figure 2.6 BN modeling the distribution over apiq, bpiq, X1, X2, X3.

Modeling the dependency between apiq and bpiq with the program above
is equivalent to represent the BN of Figure 2.5 with the network �pPq of
Figure 2.6.

Since �pPq defines the same distribution as P , the distributions P and
P 2, the one defined by �pPq, agree on the variables apiq and bpiq, i.e.,

P papiq, bpiqq “ P 2
papiq, bpiqq

for any value of apiq and bpiq. From Figure 2.6, it is also clear thatX1,X2, and
X3 are mutually unconditionally independent, thus showing that it is possible
to represent any dependency with independent random variables. So we can
model general dependencies among ground atoms with the DS.

This confirms the results of Sections 2.3 and 2.5 that graphical models can
be translated into probabilistic logic programs under the DS and vice versa.
Therefore, the two formalisms are equally expressive.

2.7 Extensions of the Distribution Semantics

Programs under the DS may contain flexible probabilities [De Raedt and
Kimmig, 2015] or probabilities that depend on values computed during
program execution. In this case, the probabilistic annotations are variables,
as in the program12 from [De Raedt and Kimmig, 2015]

12http://cplint.eu/e/flexprob.pl

http://cplint.eu/e/flexprob.pl

2.7 Extensions of the Distribution Semantics 65

red(Prob):Prob.

draw_red(R, G):-
Prob is R/(R + G),
red(Prob).

The query draw_red(r,g), where r and g are the number of green and
red balls in an urn, succeeds with the same probability as that of drawing a
red ball from the urn.

Flexible probabilities allow the computation of probabilities on the fly
during inference. However, flexible probabilities must be ground when their
value must be evaluated during inference. Many inference systems support
them by imposing constraints on the form of programs.

The body of rules may also contain literals for a meta-predicate such
as prob/2 that computes the probability of an atom, thus allowing nested
or meta-probability computations [De Raedt and Kimmig, 2015]. Among
the possible uses of such a feature De Raedt and Kimmig [2015] mention:
filtering proofs on the basis of the probability of subqueries, or implementing
simple forms of combining rules.

An example of the first use is13

a:0.2:-
prob(b,P),
P>0.1.

where a succeeds with probability 0.2 only if the probability of b is larger
than 0.1.

An example of the latter is14

p(P):P.

max_true(G1, G2) :-
prob(G1, P1),
prob(G2, P2),
max(P1, P2, P), p(P).

where max_true(G1,G2) succeeds with the success probability of its
more likely argument.

13http://cplint.eu/e/meta.pl
14http://cplint.eu/e/metacomb.pl

http://cplint.eu/e/meta.pl
http://cplint.eu/e/metacomb.pl

66 Probabilistic Logic Programming Languages

2.8 CP-Logic

CP-logic [Vennekens et al., 2009] is a language for representing causal laws.
It shares many similarities with LPADs but specifically aims at modeling
probabilistic causality. Syntactically, CP-logic programs, or CP-theories, are
identical to lpads15: they are composed of annotated disjunctive clauses that
are interpreted as follows: for each grounding

h1 : ⇧1 ; . . . ; hm : ⇧n – B

of a clause of the program, B represents an event whose effect is to cause at
most one of the hi atoms to become true and the probability of hi of being
caused is ⇧i. Consider the following medical example.

Example 29 (CP-logic program – infection [Vennekens et al., 2009]). A
patient is infected by a bacterium. Infection can cause either pneumonia
or angina. In turn, angina can cause pneumonia and pneumonia can cause
angina. This can be represented by the CP-logic program:

angina : 0.2 – pneumonia. (2.8)
pneumonia : 0.3 – angina. (2.9)

pneumonia : 0.4 ; angina : 0.1 – infection. (2.10)
infection. (2.11)

The semantics of CP-logic programs is given in terms of probability trees
that represent the possible courses of the events encoded in the program. We
consider first the case where the program is positive, i.e., the bodies of rules
do not contain negative literals.

Definition 18 (Probability tree – positive case). A probability tree16 T for
a program P is a tree where every node n is labeled with a two-valued
interpretation Ipnq and a probability P pnq. T is constructed as follows:

• The root node r has probability P prq “ 1.0 and interpretation
Iprq “ H.

• Each inner node n is associated with a ground clause Ci such that

– no ancestor of n is associated with Ci,
– all atoms in bodypCiq are true in Ipnq,

15There are versions of CP-logic that have a more general syntax but they are not essential
for the discussion here

16We follow here the definition of [Shterionov et al., 2015] for its simplicity.

2.8 CP-Logic 67

n has one child node for each atom hk P headpCiq. The k-th child has
interpretation Ipnq Y thku and probability P pnq ¨ ⇧k.

• No leaf can be associated with a clause following the rule above.

A probability tree defines a probability distribution P pIq over the interpreta-
tion of the program P: the probability of an interpretation I is the sum of the
probabilities of the leaf nodes n such that I “ Ipnq.

The probability tree for Example 2.11 is shown in Figure 2.7. The
probability distribution over the interpretations is

I tinf , pn, angu tinf , pnu tinf , angu tinf u

P pIq 0.11 0.32 0.07 0.5

There can be more than one probability tree for a program but Vennekens
et al. [2009] show that all the probability trees for the program define the
same probability distribution over interpretations. So we can speak of the
probability tree for P and this defines the semantics of the CP-logic program.
Moreover, each program has at least one probability tree.

Vennekens et al. [2009] also show that the probability distribution defined
by the LPADs semantics is the same as that defined by the CP-logic seman-
tics. So probability trees represent an alternative definition of the DS for
LPADs.

If the program contains negation, checking the truth of the body of a
clause must be made with care because an atom that is currently absent from
Ipnq may become true later. Therefore, we must make sure that for each
negative literal „a in bodypCiq, the positive literal a cannot be made true
starting from Ipnq.

Example 30 (CP-logic program – pneumonia [Vennekens et al., 2009]). A
patient has pneumonia. Because of pneumonia, the patient is treated. If the
patient has pneumonia and is not treated, he may get fever.

Figure 2.7 Probability tree for Example 2.11. From [Vennekens et al., 2009].

68 Probabilistic Logic Programming Languages

pneumonia. (2.12)
treatment : 0.95 – pneumonia. (2.13)

fever : 0.7 – pneumonia,„treatment. (2.14)

Two probability trees for this program are shown in Figures 2.8 and 2.9. Both
trees satisfy Definition 18 but define two different probability distributions.
In the tree of Figure 2.8, Clause 2.14 has negative literal „treatment in its
body and is applied at a stage where treatment may still become true, as
happens in the level below.

In the tree of Figure 2.9, instead Clause 2.14 is applied when the only
rule for treatment has already fired, so in the right child of the node at the
second level treatment will never become true and Clause 2.14 can safely
be applied.

In order to formally define this, we need the following definition that uses
three-valued logic. A conjunction in three-valued logic is true or undefined if
no literal in it is false.

Figure 2.8 An incorrect probability tree for Example 30. From [Vennekens et al., 2009].

Figure 2.9 A probability tree for Example 30. From [Vennekens et al., 2009].

2.8 CP-Logic 69

Definition 19 (Hypothetical derivation sequence). A hypothetical derivation
sequence in a node n is a sequence pIiq0§i§n of three-valued interpretations
that satisfy the following properties. Initially, I0 assigns false to all atoms
not in Ipnq. For each i ° 0, Ii`1 “ xIT,i`1, IF,i`1y is obtained from Ii “

xIT,i, IF,iy by considering a rule R with bodypRq true or undefined in Ii and
an atom a in its head that is false in I. Then IT,i`1 “ IT,i`1 and IF,i`1 “

IF,i`1ztau.

Every hypothetical derivation sequence reaches the same limit. For a node n
in a probabilistic tree, we denote this unique limit as Ipnq. It represents the
set of atoms that might still become true; in other words, all the atoms in the
false part of Ipnq will never become true and so they can be considered as
false.

The definition of probability tree of a program with negation becomes the
following.

Definition 20 (Probability tree – general case). A probability tree T for a
program P is a tree

• satisfying the conditions of Definition 18, and
• for each node n and associated clause Ci, for each negative literal „a
in bodypCiq, a P IF with Ipnq “ xIT , IF y.

All the probability trees according for the program according to Definition 20
establish the same probability distribution over interpretations.

It can be shown that the set of false atoms of the limit of the hypothetical
derivation sequence is equal to the greatest fixpoint of the operatorOpFalse

P
I

(see Definition 2) with I “ xIpnq,Hy and P a program that contains, for
each rule

h1 : ⇧1 ; . . . ; hm : ⇧n – B

of P , the rules

h1 – B.

. . .

hm – B.

In other words, if Ipnq “ xIT , IF y and gfppOpFalse
P
I q “ F , then IF “ F .

In fact, for the body of a clause to be true or undefined in Ii “ xIT,i, IF,iy,
each positive literal a must be absent from IF,i and each negative literal
„a must be such that a is absent from IT,i, which are the complementary
conditions in the definition of the operator OpFalse

P
I pFaq.

70 Probabilistic Logic Programming Languages

On the other hand, the generation of a child n1 of a node n using a rule
Ci that adds an atom a to Ipnq can be seen as part of an application of
OpTrue

P
Ipnq

. So there is a strong connection between CP-logic and the WFS.
In the trees of Figures 2.8 and 2.9, the child n “ tpnu of the root has

IF “ H, so Clause 2.14 cannot be applied as treatment R IF and the only
tree allowed by Definition 20 is that of Figure 2.9.

The semantics of CP-logic satisfies these causality principles:

• The principle of universal causation states that all changes to the state
of the domain must be triggered by a causal law whose precondition is
satisfied.

• The principle of sufficient causation states that if the precondition to
a causal law is satisfied, then the event that it triggers must eventually
happen.

and therefore the logic is particularly suitable for representing causation.
Moreover, CP-logic satisfies the temporal precedence assumption that

states that a rule R will not fire until its precondition is in its final state. In
other words, a rule fires only when the causal process that determines whether
its precondition holds is fully finished. This is enforced by the treatment of
negation of CP-logic.

There are CP-logic programs that do not admit any probability tree, as the
following example shows.

Example 31 (Invalid CP-logic program [Vennekens et al., 2009]). In a two-
player game, white wins if black does not win and black wins if white does
not win:

winpwhiteq – „winpblackq. (2.15)
winpblackq – „winpwhiteq. (2.16)

At the root of the probability tree for this program, both Clauses 2.15 and
2.16 have their body true but they cannot fire as IF for the root is H. So
the root is a leaf where however two rules have their body true, thus violating
the condition of Definition 18 that requires that leaves cannot be associated
with rules.

This theory is problematic from a causal point of view, as it is impossible to
define a process that follows the causal laws. Therefore, we want to exclude
these cases and consider only valid CP-theories.

Definition 21 (Valid CP-theory). A CP-theory is valid if it has at least one
probability tree.

2.9 Semantics for Non-Sound Programs 71

The equivalence of the LPADs and CP-logic semantics is also carried to
the general case of programs with negation: the probability tree of a valid
CP-theory defines the same distribution as that defined by interpreting the
program as an LPAD.

However, there are sound LPADs that are not valid CP-theories. Recall
that a sound LPAD is one where each possible world has a two-valued WFM.

Example 32 (Sound LPAD – invalid CP-theory Vennekens et al. [2009]).
Consider the program

p : 0.5 ; q : 0.5– r.
r –„p.
r –„q.

Such a program has no probability tree, so it is not a valid CP-theory. Its
possible worlds are

tp– r; r –„p; r –„qu

and
tq – r; r –„p; r –„qu

that both have total WFMs, tr, pu and tr, qu, respectively, so the LPAD is
sound.

In fact, it is difficult to imagine a causal process for this program.

Therefore, LPADs and CP-logic have some differences but these arise only
in corner cases, so sometimes CP-logic and LPADs are used as a synonyms.
This also shows that clauses in LPADs can be assigned in many cases a causal
interpretation.

The equivalence of the semantics implies that, for a valid CP-theory, the
leaves of the probability tree are associated with the WFMs of the possible
world obtained by considering all the clauses used in the path from the root to
the leaf with the head selected according to the choice of child. If the program
is deterministic, the only leaf is associated with the total-well founded model
of the program.

2.9 Semantics for Non-Sound Programs

In Section 2.2, we considered only sound programs, those for which every
world has a two-valued WFM. In this way, we avoid non-monotonic aspects
of the program and we deal with uncertainty only by means of probability
theory.

72 Probabilistic Logic Programming Languages

When a program is not sound in fact, assigning a semantics to probabilis-
tic logic programs is not obvious, as the next example shows.

Example 33 (Insomnia [Cozman and Mauá, 2017]). Consider the program
sleep–„work,„insomnia.
work –„sleep.
↵ :: insomnia.

This program has two worlds, w1 containing insomnia and w2 not contain-
ing it. The first has the single stable model and total WFM

I1 “ tinsomnia,„sleep,„worku

The latter has two stable models

I2 “ tinsomnia,„sleep, worku

I3 “ tinsomnia, sleep,„worku

and a WFM I2 where insomnia is true and the other two atoms are
undefined.

If we ask for the probability of sleep, the first world, w1, with probability
↵, surely doesn’t contribute. We are not sure instead what to do with the
second, as sleep is included in only one of the two stable models and it is
undefined in the WFM.

To handle programs like the above, Hadjichristodoulou and Warren [2012]
proposed the WFS for probabilistic logic programs where a program defines
a probability distribution over WFMs rather than two-valued models. This
induces a probability distribution over random variables associated with
atoms that are, however, three-valued instead of Boolean.

An alternative approach, the credal semantics [Cozman and Mauá, 2017],
sees such programs as defining a set of probability measures over the interpre-
tations. The name derives from the fact that sets of probability distributions
are often called credal sets.

The semantics considers programs syntactically equal to ProbLog (i.e.,
non-probabilistic rules and probabilistic facts) and generates worlds as in
ProbLog. The semantics requires that each world of the program has at least
one stable models. Such programs are called consistent.

A program then defines a set of probability distributions over the set of
all possible two-valued interpretations of the program. Each distribution P in
the set is called a probability model and must satisfy two conditions:

1. every interpretation I for which P pIq ° 0 must be a stable model of the
world w� that agrees with I on the truth value of the probabilistic facts;

2.9 Semantics for Non-Sound Programs 73

2. the sum of the probabilities of the stable models of w must be equal
to P p�q.

A set of distributions is obtained because we do not fix how the probability
mass P p�q of a world w� is distributed over its stable models when there
is more than one. We indicate with P the set of probability models and call
it the credal semantics of the program. Given a probability model, we can
compute the probability of a query q as for the Distribution Semantics (DS),
by summing P pIq for all the interpretations I where q is true.

In this case, given a query q, we are interested in the lower and upper
probabilities of q defined as

P pqq “ inf
PPP

P pqq

P pqq “ sup

PPP
P pqq

If we are also given evidence e, Cozman and Mauá [2017] define lower and
upper conditional probabilities as

P pq|eq “ inf
PPP,P peq°0

P pqq

P pq|eq “ sup

PPP,P peq°0
P pqq

and leave them undefined when P peq “ 0 for all P P P.

Example 34 (Insomnia – continued – [Cozman and Mauá, 2017]). Consider
again the program of Example 33. A probability model that assigns the
following probabilities to the models of the program

P pI1q “ ↵
P pI2q “ �p1 ´ ↵q

P pI3q “ p1 ´ �qp1 ´ ↵q

for � P r0, 1s, satisfies the two conditions of the semantics, and thus belongs
to P. The elements of P are obtained by varying �.

Considering the query sleep, we can easily see thatP psleep “ trueq “ 0

and P psleep “ trueq “ 1 ´ ↵.
With the semantics of [Hadjichristodoulou and Warren, 2012] instead,

we have
P pI1q “ ↵
P pI2q “ 1 ´ ↵

74 Probabilistic Logic Programming Languages

so
P psleep “ trueq “ 0

P psleep “ falseq “ ↵
P psleep “ undefinedq “ 1 ´ ↵.

Example 35 (Barber paradox – [Cozman and Mauá, 2017]). The barber
paradox was introduced by Russell [1967]. If the village barber shaves all,
and only, those in the village who don’t shave themselves, does the barber
shave himself?

A probabilistic version of this paradox can be encoded with the program
shavespX,Y q – barberpXq, villagerpY q,„shavespY, Y q.
villagerpaq.
barberpbq.
0.5 :: villagerpbq.

and the query shavespb, bq.
The program has two worlds, w1 and w2, the first not containing the

fact villagerpbq and the latter containing it. The first world has a single
stable model I1 “ tvillagerpaq, barberpbq, shavespb, aqu that is also the
total WFM. In the latter world, the rule has an instance that can be simplified
to shavespb, bq –„shavespb, bq. Since it contains a loop through an odd
number of negations, the world has no stable model and the three-valued
WFM:

I2 “ tvillagerpaq, barberpbq, shavespb, aq,„shavespa, aq,„shavespa, bqu.

So the program is not consistent and the credal semantics is not defined for it,
while the semantics of [Hadjichristodoulou and Warren, 2012] is still defined
and would yield

P pshavespb, bq “ trueq “ 0.5
P pshavespb, bq “ undefinedq “ 0.5

The WFS for probabilistic logic programs assigns a semantics to more
programs. However, it introduces the truth value undefined that expresses
uncertainty and, since probability is used as well to deal with uncertainty,
some confusion may arise. For example, one may ask what is the value of
pq “ true|e “ undefinedq. If e “ undefined means that we don’t know
anything about e, then P pq “ true|e “ undefinedq should be equal to
P pq “ trueq but this is not true in general. The credal semantics avoids these
problems by considering only two truth values.

Cozman and Mauá [2017] show that the set P is the set of all probability
measures that dominate an infinitely monotone Choquet capacity.

2.9 Semantics for Non-Sound Programs 75

An infinitely monotone Choquet capacity is a function P from an algebra
⌦ on a setW to the real interval r0, 1s such that

1. P pW q “ 1 ´ P pHq “ 1, and
2. for any !1, . . . ,!n Ñ ⌦,

P pYi!iq •
ÿ

JÑt1,...,nu

p´1q
|J |`1P pXjPJ!jq (2.17)

Infinitely monotone Choquet capacity is a generalization of finitely additive
probability measures: the latter are special cases of the first where Equation
(2.17) holds with equality. In fact, the right member of Equation (2.17) is an
application of the inclusion–exclusion principle that gives the probability of
the union of non-disjoint sets. Infinitely monotone Choquet capacities also
appear as belief functions of Dempster–Shafer theory [Shafer, 1976].

Given an infinitely monotone Choquet capacity P , we can construct the
set of measures DpP q that dominate P as

DpP q “ tP |@! P ⌦ : P p!q • P p!qu

We say that P generates the credal set DpP q and we call DpP q an infinitely
monoton credal set. It is possible to show that the lower probability of DpP q

is exactly the generating infinitely monotone Choquet capacity: P p!q “

infPPDpP q P p!q.
Infinitely monotone credal sets are closed and convex. Convexity here

means that if P1 and P2 are in the credal set, then ↵P1 ` p1´↵qP2 is also in
the credal set for ↵ P r0, 1s. Given a consistent program, its credal semantics
is thus a closed and convex set of probability measures.

Moreover, given a query q, we have

P pqq “

ÿ

wPW,ASpwqÑJq

P p�q P pqq “

ÿ

wPW,ASpwqXJq‰H

P p�q

where Jq is the set of interpretations where q is true and ASpwq is the set of
stable models of world w�.

The lower and upper conditional probabilities of a query q are given by:

P pq|eq “
P pq, eq

P pq, eq ` P p q, eq
(2.18)

P pq|eq “
P pq, eq

P pq, eq ` P p q, eq
(2.19)

76 Probabilistic Logic Programming Languages

2.10 KBMC Probabilistic Logic Programming Languages

In this section, we present three examples of KBMC languages: Bayesian
Logic Programs (BLPs), CLP(BN), and the Prolog Factor Language (PFL).

2.10.1 Bayesian Logic Programs

BLPs [Kersting and De Raedt, 2001] use logic programming to compactly
encode a large BN. In BLPs, each ground atom represents a (not necessarily
Boolean) random variable and the clauses define the dependencies between
ground atoms. A clause of the form

a|a1, . . . , am

indicates that, for each of its groundings pa|a1, . . . , amq✓, a✓ has a1✓, . . .,
am✓ as parents. The domains and CPTs for the ground atom/random variables
are defined in a separate portion of the model. In the case where a ground
atom a✓ appears in the head of more than one clause, a combining rule is
used to obtain the overall CPT from those given by individual clauses.

For example, in the Mendelian genetics program of Example 25, the
dependency that gives the value of the color gene on chromosome 1 of a
plant as a function of the color genes of its mother can be expressed as

cg(X,1)|mother(Y,X),cg(Y,1),cg(Y,2).

where the domain of atoms built on predicate cg/2 is {p,w} and the domain of
mother(Y,X) is Boolean. A suitable CPT should then be defined that assigns
equal probability to the alleles of the mother to be inherited by the plant.

Various learning systems use BLPs as the representation language: RBLP
[Revoredo and Zaverucha, 2002; Paes et al., 2005], PFORTE [Paes et al.,
2006], and SCOOBY [Kersting and De Raedt, 2008].

2.10.2 CLP(BN)

In a CLP(BN) program [Costa et al., 2003], logical variables can be random.
Their domain, parents, and CPTs are defined by the program. Probabilistic
dependencies are expressed by means of constraints as in Constraint Logic
Programming (CLP):

{ Var = Function with p(Values, Dist) }
{ Var = Function with p(Values, Dist, Parents) }

2.10 KBMC Probabilistic Logic Programming Languages 77

The first form indicates that the logical variable Var is random with domain
Values and CPT Dist but without parents; the second form defines a
random variable with parents. In both forms, Function is a term over
logical variables that is used to parameterize the random variable: a different
random variable is defined for each instantiation of the logical variables in
the term. For example, the following snippet from a school domain:

course_difficulty(CKey, Dif) :-
{ Dif = difficulty(CKey) with p([h,m,l],
[0.25, 0.50, 0.25]) }.

defines the random variable Dif with values h, m, and l representing the
difficulty of the course identified by CKey. There is a different random
variable for every instantiation of CKey, i.e., for each course. In a similar
manner, the intelligence Int of a student identified by SKey is given by

student_intelligence(SKey, Int) :-
{ Int = intelligence(SKey) with p([h, m, l],
[0.5,0.4,0.1]) }.

Using the above predicates, the following snippet predicts the grade received
by a student when taking the exam of a course.

registration_grade(Key, Grade) :-
registration(Key, CKey, SKey),
course_difficulty(CKey, Dif),
student_intelligence(SKey, Int),
{ Grade = grade(Key) with p([’A’,’B’,’C’,’D’],
% h/h h/m h/l m/h m/m m/l l/h l/m l/l
[0.20,0.70,0.85,0.10,0.20,0.50,0.01,0.05,0.10,
% ’A’
0.60,0.25,0.12,0.30,0.60,0.35,0.04,0.15,0.40,
% ’B’
0.15,0.04,0.02,0.40,0.15,0.12,0.50,0.60,0.40,
% ’C’
0.05,0.01,0.01,0.20,0.05,0.03,0.45,0.20,0.10],
% ’D’

[Int,Dif]) }.

Here Grade indicates a random variable parameterized by the identifier
Key of a registration of a student to a course. The code states that there

78 Probabilistic Logic Programming Languages

is a different random variable Grade for each student’s registration in a
course and each such random variable has possible values ‘‘A’’, ‘‘B’’,
‘‘C’’ and ‘‘D’’. The actual value of the random variable depends on the
intelligence of the student and on the difficulty of the course, that are thus its
parents. Together with facts for registration/3 such as

registration(r0,c16,s0). registration(r1,c10,s0).
registration(r2,c57,s0). registration(r3,c22,s1).
....

the code defines a BN with a Grade random variable for each registration.
CLP(BN) is implemented as a library of YAP Prolog. The library performs
query answering by constructing the sub-network that is relevant to the query
and then applying a BN inference algorithm.

The unconditional probability of a random variable can be computed by
simply asking a query to the YAP command line.

The answer will be a probability distribution over the values of the logical
variables of the query that represent random variables, as in

?- registration_grade(r0,G).
p(G=a)=0.4115,
p(G=b)=0.356,
p(G=c)=0.16575,
p(G=d)=0.06675 ?

Conditional queries can be posed by including in the query ground atoms
representing the evidence.

For example, the probability distribution of the grades of registration r0
given that the intelligence of the student is high (h) is given by

?- registration_grade(r0,G),
student_intelligence(s0,h).
p(G=a)=0.6125,
p(G=b)=0.305,
p(G=c)=0.0625,
p(G=d)=0.02 ?

In general, CLP provides a useful tool for Probabilistic Logic Programming
(PLP), as is testified by the proposals clp(pdf(Y)) [Angelopoulos, 2003, 2004]
and Probabilistic Constraint Logic Programming (PCLP) [Michels et al.,
2015], see Section 4.5.

2.10 KBMC Probabilistic Logic Programming Languages 79

2.10.3 The Prolog Factor Language

The PFL [Gomes and Costa, 2012] is an extension of Prolog for representing
first-order probabilistic models.

Most graphical models such as BNs and MNs concisely represent a joint
distribution by encoding it as a set of factors. The probability of a set of
variablesX taking value x can be expressed as the product of n factors as:

P pX “ xq “

±
i“1,...,n �ipxiq

Z

where xi is a sub-vector of x on which the i-th factor depends and Z is the
normalization constant. Often, in a graphical model, the same factors appear
repeatedly in the network, and thus we can parameterize these factors in order
to simplify the representation.

A Parameterized Random Variables (PRVs) is a logical atom representing
a set of random variables, one for each of its possible ground instantiations.
We indicate PRV as X,Y, . . . and vectors of PRVs as X,Y, . . .

A parametric factor or parfactor [Kisynski and Poole, 2009b] is a triple
xC,V, F y where C is a set of inequality constraints on parameters (logical
variables), V is a set of PRVs and F is a factor that is a function from the
Cartesian product of ranges of PRVs in V to real values. A parfactor is also
represented as F pVq|C or F pVq if there are no constraints. A constrained
PRV is of the form V|C, where V “ ppX1, . . . , Xnq is a non-ground atom
and C is a set of constraints on logical variables X “ tX1, . . . , Xnu. Each
constrained PRV represents the set of random variables tP pxq|x P Cu, where
x is the tuple of constants px1, . . . , xnq. Given a (constrained) PRV V, we
use RV pVq to denote the set of random variables it represents. Each ground
atom is associated with one random variable, which can take any value in
rangepVq.

The PFL extends Prolog to support probabilistic reasoning with paramet-
ric factors. A PFL factor is a parfactor of the form

Type F ; � ; C,

where Type refers to the type of the network over which the parfactor is
defined (bayes for directed networks or markov for undirected ones); F is a
sequence of Prolog goals each defining a PRV under the constraints in C (the
arguments of the factor). IfL is the set of all logical variables in F, then C is a
list of Prolog goals that impose bindings onL (the successful substitutions for

80 Probabilistic Logic Programming Languages

the goals in C are the valid values for the variables inL). � is the table defining
the factor in the form of a list of real values. By default, all random variables
are Boolean but a different domain may be defined. Each parfactor represents
the set of its groundings. To ground a parfactor, all variables ofL are replaced
with the values permitted by constraints in C. The set of ground factors defines
a factorization of the joint probability distribution over all random variables.

Example 36 (PFL program). The following PFL program is inspired by the
workshop attributes problem of [Milch et al., 2008]. It models the organiza-
tion of a workshop where a number of people have been invited. series
indicates whether the workshop is successful enough to start a series of
related meetings while attends(P) indicates whether person P attends
the workshop.

This problem can be modeled by a PFL program such as

bayes series, attends(P); [0.51, 0.49, 0.49, 0.51];
[person(P)].

bayes attends(P), at(P,A); [0.7, 0.3, 0.3, 0.7];
[person(P),attribute(A)].

A workshop becomes a series because people attend. People attend the
workshop depending on the workshop’s attributes such as location, date,
fame of the organizers, etc. The probabilistic atom at(P,A) represents
whether person P attends because of attribute A.

The first PFL factor has the random variables series and
attends(P) as arguments (both Boolean), [0.51,0.49,0.49,0.51]
as table and the list [person(P)] as constraint.

Since KBMC languages are defined on the basis of a translation to graphical
models, translations can be built between PLP languages under the DS and
KBMC languages. The first have the advantage that they have a semantics
that can be understood in logical terms, without necessarily referring to an
underlying graphical model.

2.11 Other Semantics for Probabilistic Logic Programming

Here we briefly discuss a few examples of PLP frameworks that don’t follow
the distribution semantics. Our goal in this section is simply to give the
flavor of other possible approaches; a complete account of such frameworks
is beyond the scope of this book.

2.11 Other Semantics for Probabilistic Logic Programming 81

2.11.1 Stochastic Logic Programs

Stochastic Logic Programs (SLPs) [Muggleton et al., 1996; Cussens, 2001]
are logic programs with parameterized clauses which define a distribution
over refutations of goals. The distribution provides, by marginalization, a
distribution over variable bindings for the query. SLPs are a generalization
of stochastic grammars and hidden Markov models.

An SLP S is a definite logic program where some of the clauses are of
the form p : C where p P R, p • 0, and C is a definite clause. Let npSq

be the definite logic program obtained by removing the probability labels. A
pure SLP is an SLP where all clauses have probability labels. A normalized
SLP is one where probability labels for clauses whose heads share the same
predicate symbol sum to one.

In pure SLPs, each SLD derivation for a query q is assigned a real label
by multiplying the labels of each individual derivation step. The label of a
derivation step where the selected atom unifies with the head of clause pi : Ci

is pi. The probability of a successful derivation from q is the label of the
derivation divided by the sum of the labels of all the successful derivations.
This forms a distribution over successful derivations from q.

The probability of an instantiation q✓ is the sum of the probabilities of the
successful derivations that produce q✓. It can be shown that the probabilities
of all the atoms for a predicate q that succeed in npSq sum to one, i.e., S
defines a probability distribution over the success set of q in npSq.

In impure SLPs, the unparameterized clauses are seen as non-probabilistic
domain knowledge acting as constraints. Derivations are identified with the
set of the parameterized clauses they use. In this way, derivations that differ
only on the unparameterized clauses form an equivalence class.

In practice, SLPs define probability distributions over the children of
nodes of the SLD tree for a query: a derivation step u Ñ v that connects
node u with child node v is assigned a probability P pv|uq. This induces a
probability distributions over paths from the root to the leaves of the SLD
tree and in turn over answers for the query.

Given their similarity with stochastic grammars and hidden Markov mod-
els, SLPs are particularly suitable for representing these kinds of models.
They differ from the DS because they define a probability distribution over
instantiations of the query, while the DS usually defines a distribution over
the truth values of ground atoms.

82 Probabilistic Logic Programming Languages

Example 37 (Probabilistic context-free grammar – SLP). Consider the
probabilistic context free grammar:

0.2 : S Ñ aS
0.2 : S Ñ bS
0.3 : S Ñ a
0.3 : S Ñ b

The SLP
0.2 : spra|Rsq– spRq.
0.2 : sprb|Rsq– spRq.
0.3 : sprasq.
0.3 : sprbsq.

defines a distribution over the values of S in spSq that is the same as the
one defined by the probabilistic context-free grammar above. For example,
P pspra, bsqq “ 0.2 ¨ 0.3 “ 0.6 according to the program and P pabq “ 0.2 ¨

0.3 “ 0.6 according to the grammar.

Various approaches have been proposed for learning SLPs. Muggleton
[2000a,b] proposed to use an Inductive Logic Programming (ILP) system,
Progol [Muggleton, 1995], for learning the structure of the programs, and
a second phase where the parameters are tuned using a generalization of
relative frequency.

Parameters are also learned by means of optimization in failure-adjusted
maximization [Cussens, 2001; Angelopoulos, 2016] and by solving algebraic
equations [Muggleton, 2003].

2.11.2 ProPPR

ProPPR [Wang et al., 2015] is an extension of SLPs that that is related to
Personalized PageRank (PPR) [Page et al., 1999].

ProPPR extends SLPs in two ways. The first is the method for computing
the labels of the derivation steps. A derivation step u Ñ v is not simply
assigned the parameter associated with the clause used in the step. Instead,
the label of the derivation step, P pv|uq is computed using a log-linear model
P pv|uq9 exppw¨�uÑvq wherew is a vector of real-valued weights and �uÑv

is a 0/1 vector of “features” that depend on the clause being used. The features
are user defined and the association between clauses and features is indicated
using annotations.

Example 38 (ProPPR program). The ProPPR program [Wang et al., 2015]
aboutpX,Zq– handLabeledpX,Zq. #base
aboutpX,Zq– simpX,Y q, aboutpY, Zq. #prop

2.12 Other Semantics for Probabilistic Logics 83

simpX,Y q– linkpX,Y q. #sim, link
simpX,Y q– hasWordpX,W q, hasWordpY,W q,

linkedBypX,Y,W q. #sim,word
linkedBypX,Y,W q. #bypW q

can be used to compute the topic of web pages on the basis of possible hand
labeling or similarity with other web pages. Similarity is defined as well in a
probabilistic way depending on the links and words between the two pages.

Clauses are annotated with a list of atoms (indicated after the # symbol) that
may contain variables from the head of clauses. In the example, the third
clause is annotated with the list of atoms sim, link while the last clause is
annotated by the atom bypW q. Each grounding of each atom in the list stands
for a different feature, so for example sim, link, and bypsprinterq stand for
three different features. The vector �uÑv is obtained by assigning value 1 to
the features associated with the atoms in the annotation of the clause used
for the derivation step u Ñ v and value 0 otherwise. If the atoms contain
variables, these are shared with the head of the clause and are grounded with
the values of the clause instantiation used in u Ñ v.

So a ProPPR program is defined by an annotated program plus values for
the weightsw. This annotation approach considerably increases the flexibility
of SLP labels: ProPPR annotations can be shared across clauses and can
yield labels that depend on the particular clause grounding that is used by
the derivation step. An SLP is a ProPPR program where each clause has a
different annotation consisting of an atom without arguments.

The second way in which ProPPR extend SLPs consists in the addition of
edges to the SLD tree: an edge is added (a) from every solution leaf to itself;
and (b) from every node to the start node.

The procedure for assigning probabilities to queries of SLP can then
be applied to the resulting graph. The self-loop links heuristically upweight
solution nodes and the restart links make SLP’s graph traversal a PPR pro-
cedure [Page et al., 1999]: a PageRank can be associated with each node,
representing the probability that a random walker starting from the root
arrives in that node.

The restart links favor the results of short proofs: if the restart probability
is ↵ for every node u, then the probability of reaching any node at depth d is
bounded by p1 ´ ↵q

d.
Parameter learning for ProPPR is performed in [Wang et al., 2015] by

stochastic gradient descent.

84 Probabilistic Logic Programming Languages

2.12 Other Semantics for Probabilistic Logics

In this section, we discuss semantics for probabilistic logic languages that are
not based on logic programming.

2.12.1 Nilsson’s Probabilistic Logic

Nilsson’s probabilistic logic [Nilsson, 1986] takes an approach for combining
logic and probability that is different from the DS: while the first considers
sets of distributions, the latter computes a single distribution over possible
worlds. In Nilsson’s logic, a probabilistic interpretation Pr defines a prob-
ability distribution over the set of interpretations Int2 . The probability of a
logical formula F according to Pr, denoted PrpF q, is the sum of all PrpIq

such that I P Int2 and I (F . A probabilistic knowledge base K is a set of
probabilistic formulas of the form F • p. A probabilistic interpretation Pr
satisfies F • p iff PrpF q • p. Pr satisfies K, or Pr is a model of K, iff
Pr satisfies all F • p P K. PrpF q • p is a tight logical consequence of K
iff p is the infimum of PrpF q in the set of all models Pr of K. Computing
tight logical consequences from probabilistic knowledge bases can be done
by solving a linear optimization problem.

With Nilsson’s logic, the consequences that can be obtained from logical
formulas differ from those of the DS. Consider a ProbLog program (see
Section 2.1) composed of the facts 0.4 :: cpaq and 0.5 :: cpbq, and a
probabilistic knowledge base composed of cpaq • 0.4 and cpbq • 0.5. For
the DS, P pcpaq _ cpbqq “ 0.7, while with Nilsson’s logic, the lowest p such
that Prpcpaq _ cpbqq • p holds is 0.5. This difference is due to the fact that,
while Nilsson’s logic makes no assumption about the independence of the
statements, in the DS, the probabilistic axioms are considered as indepen-
dent. While independencies can be encoded in Nilsson’s logic by carefully
choosing the values of the parameters, reading off the independencies from
the theories becomes more difficult.

However, the assumption of independence of probabilistic axioms does
not restrict expressiveness as shown in Section 2.6.

2.12.2 Markov Logic Networks

AMarkov Logic Network (MLN) is a first-order logical theory in which each
sentence is associated with a real-valued weight. An MLN is a template for
generating MNs. Given sets of constants defining the domains of the logical
variables, an MLN defines an MN that has a Boolean node for each ground

2.12 Other Semantics for Probabilistic Logics 85

atom and edges connecting the atoms appearing together in a grounding of
a formula. MLNs follow the KBMC approach for defining a probabilistic
model [Wellman et al., 1992; Bacchus, 1993]. The probability distribution
encoded by an Markov Logic Network (MLN) is

P pxq “
1

Z
expp

ÿ

fiPM

winipxqq

where x is a joint assignment of truth value to all atoms in the Herbrand base
(finite because of no function symbols),M is the MLN, fi is the i-th formula
in M , wi is its weight, nipxq is the number of groundings of formula fi that
are satisfied in x, and Z is a normalization constant.

Example 39 (Markov Logic Network). The followingMLN encodes a theory
on the intelligence of friends and on the marks people get:

1.5 Intelligent(x) => GoodMarks(x)
1.1 Friends(x,y) => (Intelligent(x)<=>

Intelligent(y))

The first formula gives a positive weight to the fact that if someone is
intelligent, then he gets good marks in the exams he takes. The second formula
gives a positive weight to the fact that friends have similar intelligence: in
particular, the formula states that if x and y are friends, then x is intelligent
if and only if y is intelligent, so they are either both intelligent or both not
intelligent.

If the domain contains two individuals, Anna and Bob, indicated with A
and B, we get the ground MN of Figure 2.10.

2.12.2.1 Encoding Markov Logic Networks with Probabilistic
Logic Programming

It is possible to encode MNs and MLNs with LPADs. The encoding is based
on the BN that is equivalent to the MN as discussed in Section 1.6: an MN

Figure 2.10 Ground Markov network for the MLN of Example 39.

86 Probabilistic Logic Programming Languages

factor can be represented with an extra node in the equivalent BN that is
always observed. In order to model MLN formulas with LPADs, we can add
an extra atom clauseipXq for each formula Fi “ wi Ci where wi is the
weight associated with Ci and X is the vector of variables appearing in Ci.
Then, when we ask for the probability of query q given evidence e, we have
to ask for the probability of q given e^ ce, where ce is the conjunction of the
groundings of clauseipXq for all values of i.

Clause Ci must be transformed into a Disjunctive Normal Form (DNF)
formula Ci1 _ . . . _ Cini , where the disjuncts are mutually exclusive and the
LPAD should contain the clauses

clauseipXq : e↵{p1 ` e↵q – Cij

for all j in 1, ..., ni, where 1 ` e↵ • maxxi �pxiq “ maxt1, e↵u. Similarly,
 Ci must be transformed into a DNFDi1 _ . . ._Dimi and the LPAD should
contain the clauses

clauseipXq : 1{p1 ` e↵q–Dil

for all l in 1, ...,mi.
Moreover, for each predicate p{n, we should add the clause

ppXq : 0.5.

to the program, assigning a priori uniform probability to every ground atom.
Alternatively, if ↵ is negative, e↵ will be smaller than 1 and

maxxi �pxiq “ 1. So we can use the two probability values e↵ and 1 with
the clauses

clauseipXq : e↵– Cij .

clauseipXq – Dil.

This solution has the advantage that some clauses are non-probabilistic,
reducing the number of random variables. If ↵ is positive in the formula ↵ C,
we can consider the equivalent formula ´↵ C.

The transformation above is illustrated by the following example. Given
the MLN

1.5 Intelligent(x) => GoodMarks(x)
1.1 Friends(x,y) => (Intelligent(x)<=>Intelligent(y))

2.12 Other Semantics for Probabilistic Logics 87

the first formula is translated to the clauses:

clause1(X):0.8175 :- \+intelligent(X).
clause1(X):0.1824 :- intelligent(X),

\+good_marks(X).
clause1(X):0.8175 :- intelligent(X),good_marks(X).

where 0.8175 “ e1.5{p1 ` e´1.5
q and 0.1824 “ 1{p1 ` e´1.5

q.
The second formula is translated to the clauses

clause2(X,Y):0.7502 :- \+friends(X,Y).
clause2(X,Y):0.7502 :- friends(X,Y),

intelligent(X),
intelligent(Y).

clause2(X,Y):0.7502 :- friends(X,Y),
\+intelligent(X),
\+intelligent(Y).

clause2(X,Y):0.2497 :- friends(X,Y),
intelligent(X),
\+intelligent(Y).

clause2(X,Y):0.2497 :- friends(X,Y),
\+intelligent(X),
intelligent(Y).

where 0.7502 “ e1.1{p1 ` e1.1q and 0.2497 “ 1{p1 ` e1.1q.
A priori we have a uniform distribution over student intelligence, good

marks, and friendship:

intelligent(_):0.5.
good_marks(_):0.5.
friends(_,_):0.5.

and there are two students:

student(anna).
student(bob).

We have evidence that Anna is friend with Bob and Bob is intelligent.
The evidence must also include the truth of all groundings of the clausei
predicates:

evidence_mln :- clause1(anna),clause1(bob),
clause2(anna,anna),clause2(anna,bob),
clause2(bob,anna),clause2(bob,bob).

ev_intelligent_bob_friends_anna_bob :-
intelligent(bob),friends(anna,bob),
evidence_mln.

88 Probabilistic Logic Programming Languages

The probability that Anna gets good marks given the evidence is thus

P pgood marks(anna)|ev intelligent bob friends anna bobq

while the prior probability of Anna getting good marks is given by

P pgood marks(anna)q.

The probability resulting from the first query is higher (P “ 0.733) than the
second query (P “ 0.607), since it is conditioned to the evidence that Bob is
intelligent and Anna is his friend.

In the alternative transformation, the first MLN formula is translated to:

clause1(X) :- \+intelligent(X).
clause1(X):0.2231 :- intelligent(X),\+good_marks(X).
clause1(X) :- intelligent(X), good_marks(X).

where 0.2231 “ e´1.5.
MLN formulas can also be added to a regular probabilistic logic program.

In this case, their effect is equivalent to a soft form of evidence, where certain
worlds are weighted more than others. This is the same as soft evidence in
Figaro [Pfeffer, 2016]. MLN hard constraints, i.e., formulas with an infinite
weight, can instead be used to rule out completely certain worlds, those
violating the constraint. For example, given hard constraint C equivalent to
the disjunction Ci1 _ . . . _ Cini , the LPAD should contain the clauses

clauseipXq – Cij

for all j, and the evidence should contain clauseipxq for all groundings
x ofX . In this way, the worlds that violate C are ruled out.

2.12.3 Annotated Probabilistic Logic Programs

In Annotated Probabilistic Logic Programming (APLP) [Ng and Subrah-
manian, 1992], program atoms are annotated with intervals that can be
interpreted probabilistically. An example rule in this approach is:

a : r0.75, 0.85s – b : r1, 1s, c : r0.5, 0.75s

that states that the probability of a is between 0.75 and 0.85 if b is certainly
true and the probability of c is between 0.5 and 0.75. The probability interval
of a conjunction or disjunction of atoms is defined using a combinator to

2.12 Other Semantics for Probabilistic Logics 89

construct the tightest bounds for the formula. For instance, if d is annotated
with rld, hds and e with rle, hes, the probability of e ^ d is annotated with

rmaxp0, ld ` le ´ 1q,minphd, heqs.

Using these combinators, an inference operator and fixpoint semantics is
defined for positive Datalog programs. A model theory is obtained for
such programs by considering the annotations as constraints on acceptable
probabilistic worlds: an APLP thus describes a family of probabilistic worlds.

APLPs have the advantage that deduction is of low complexity, as the
logic is truth-functional, i.e., the probability of a query can be computed
directly using combinators. The corresponding disadvantages are that APLPs
may be inconsistent if they are not carefully written, and that the use of
the above combinators may quickly lead to assigning overly slack proba-
bility intervals to certain atoms. These aspects are partially addressed by
hybrid APLPs Dekhtyar and Subrahmanian [2000], which allow different
flavors of combinators based on, e.g., independence or mutual exclusivity
of given atoms.

