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Probabilistic Logic Programming

Probabilistic Logic Programming

Distribution Semantics [Sato ICLP95]
A probabilistic logic program defines a probability distribution over normal logic programs
(called instances or possible worlds or simply worlds)
The distribution is extended to a joint distribution over worlds and interpretations (or
queries)
The probability of a query is obtained from this distribution
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Probabilistic Logic Programming

Probabilistic Logic Programming (PLP) Languages under the Distribution
Semantics

Probabilistic Logic Programs [Dantsin RCLP91]
Probabilistic Horn Abduction [Poole NGC93], Independent Choice Logic (ICL) [Poole AI97]
PRISM [Sato ICLP95]
Logic Programs with Annotated Disjunctions (LPADs) [Vennekens et al. ICLP04]
ProbLog [De Raedt et al. IJCAI07]
They differ in the way they define the distribution over logic programs
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Probabilistic Logic Programming

PLP Online

http://cplint.eu
Inference (knowledge compilation, Monte Carlo)
Parameter learning (EMBLEM)
Structure learning (SLIPCOVER, LEMUR)

https://dtai.cs.kuleuven.be/problog/
Inference (knwoledge compilation, Monte Carlo)
Parameter learning (LFI-ProbLog)
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Probabilistic Logic Programming Sato’s distribution semantics

PRISM

sneezingpX q Ð flupX q,mswpflu_sneezingpX q, 1q.
sneezingpX q Ð hay_feverpX q,mswphay_fever_sneezingpX q, 1q.
flupbobq.
hay_feverpbobq.

valuespflu_sneezingp_X q, r1, 0sq.
valuesphay_fever_sneezingp_X q, r1, 0sq.
: ´set_swpflu_sneezingp_X q, r0.7, 0.3sq.
: ´set_swphay_fever_sneezingp_X q, r0.8, 0.2sq.

Distributions over msw facts (random switches)
Worlds obtained by selecting one value for every grounding of each msw statement
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Probabilistic Logic Programming Sato’s distribution semantics

Logic Programs with Annotated Disjunctions

sneezingpX q : 0.7 ; null : 0.3Ð flupX q.
sneezingpX q : 0.8 ; null : 0.2Ð hay_feverpX q.
flupbobq.
hay_feverpbobq.

Distributions over the head of rules
null does not appear in the body of any rule
Worlds obtained by selecting one atom from the head of every grounding of each clause
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Probabilistic Logic Programming Sato’s distribution semantics

ProbLog

sneezingpX q Ð flupX q, flu_sneezingpX q.
sneezingpX q Ð hay_feverpX q, hay_fever_sneezingpX q.
flupbobq.
hay_feverpbobq.
0.7 :: flu_sneezingpX q.
0.8 :: hay_fever_sneezingpX q.

Distributions over facts
Worlds obtained by selecting or not every grounding of each probabilistic fact
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Probabilistic Logic Programming Sato’s distribution semantics

Distribution Semantics

Case of no function symbols: finite Herbrand universe, finite set of groundings of each
switch/clause
Atomic choice: selection of the i-th atom for grounding Cθ of switch/clause C

represented with the triple pC , θ, iq
a ProbLog fact p :: F is interpreted as F : p _ null : 1´ p.

Example C1 “ sneezingpX q : 0.7_ null : 0.3Ð flupX q., pC1, tX {bobu, 1q
Composite choice κ: consistent set of atomic choices
The probability of composite choice κ is

Ppκq “
ź

pCi ,θ,kqPκ

Πi ,k
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Probabilistic Logic Programming Sato’s distribution semantics

Distribution Semantics

Selection σ: a total composite choice (one atomic choice for every grounding of each
clause)
A selection σ identifies a logic program wσ called world
The probability of wσ is Ppwσq “ Ppσq “

ś

pCi ,θ,kqPσ
Πi ,k

Finite set of worlds: WT “ tw1, . . . ,wmu

Ppwq distribution over worlds:
ř

wPWT
Ppwq “ 1
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Probabilistic Logic Programming Sato’s distribution semantics

Distribution Semantics

Ground query Q

PpQ|wq “ 1 if Q is true in w and 0 otherwise
PpQq “

ř

w PpQ,wq “
ř

w PpQ|wqPpwq “
ř

w |ùQ Ppwq
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Probabilistic Logic Programming Sato’s distribution semantics

Example Program (PRISM) Worlds

http://cplint.eu/e/sneezing_simple_msw.pl

4 worlds
sneezingpX q Ð flupX q,mswpflu_sneezingpX q, 1q.
sneezingpX q Ð hay_feverpX q,mswphay_fever_sneezingpX q, 1q.
flupbobq.
hay_feverpbobq.

mswpflu_sneezingpbobq, 1q. mswpflu_sneezingpbobq, 0q.
mswphay_fever_sneezingpbobq, 1q. mswphay_fever_sneezingpbobq, 1q.
Ppw1q “ 0.7ˆ 0.8 Ppw2q “ 0.3ˆ 0.8
mswpflu_sneezingpbobq, 1q. mswpflu_sneezingpbobq, 0q.
mswphay_fever_sneezingpbobq, 0q. mswphay_fever_sneezingpbobq, 0q.
Ppw3q “ 0.7ˆ 0.2 Ppw4q “ 0.3ˆ 0.2

sneezingpbobq is true in 3 worlds
Ppsneezingpbobqq “ 0.7ˆ 0.8` 0.3ˆ 0.8` 0.7ˆ 0.2 “ 0.94
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Probabilistic Logic Programming Sato’s distribution semantics

Example Program (LPAD) Worlds
http://cplint.eu/e/sneezing_simple.pl

sneezingpbobq Ð flupbobq. null Ð flupbobq.
sneezingpbobq Ð hay_feverpbobq. sneezingpbobq Ð hay_feverpbobq.
flupbobq. flupbobq.
hay_feverpbobq. hay_feverpbobq.
Ppw1q “ 0.7ˆ 0.8 Ppw2q “ 0.3ˆ 0.8

sneezingpbobq Ð flupbobq. null Ð flupbobq.
null Ð hay_feverpbobq. null Ð hay_feverpbobq.
flupbobq. flupbobq.
hay_feverpbobq. hay_feverpbobq.
Ppw3q “ 0.7ˆ 0.2 Ppw4q “ 0.3ˆ 0.2

PpQq “
ÿ

wPWT

PpQ,wq “
ÿ

wPWT

PpQ|wqPpwq “
ÿ

wPWT :w |ùQ

Ppwq

sneezingpbobq is true in 3 worlds
Ppsneezingpbobqq “ 0.7ˆ 0.8` 0.3ˆ 0.8` 0.7ˆ 0.2 “ 0.94
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Probabilistic Logic Programming Sato’s distribution semantics

Example Program (ProbLog) Worlds

http://cplint.eu/e/sneezing_simple_pb.pl

4 worlds
sneezingpX q Ð flupX q, flu_sneezingpX q.
sneezingpX q Ð hay_feverpX q, hay_fever_sneezingpX q.
flupbobq.
hay_feverpbobq.

flu_sneezingpbobq.
hay_fever_sneezingpbobq. hay_fever_sneezingpbobq.
Ppw1q “ 0.7ˆ 0.8 Ppw2q “ 0.3ˆ 0.8
flu_sneezingpbobq.
Ppw3q “ 0.7ˆ 0.2 Ppw4q “ 0.3ˆ 0.2

sneezingpbobq is true in 3 worlds
Ppsneezingpbobqq “ 0.7ˆ 0.8` 0.3ˆ 0.8` 0.7ˆ 0.2 “ 0.94
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Probabilistic Logic Programming Sato’s distribution semantics

Logic Programs with Annotated Disjunctions

http://cplint.eu/e/sneezing.pl

strong_sneezingpX q : 0.3_moderate_sneezingpX q : 0.5 Ð flupX q.
strong_sneezingpX q : 0.2_moderate_sneezingpX q : 0.6 Ð hay_feverpX q.
flupbobq.
hay_feverpbobq.

9 worlds
Ppstrong_sneezingpbobqq “ 0.3ˆ0.2`0.3ˆ0.6`0.3ˆ0.2`0.5ˆ0.2`0.2ˆ0.2 “ 0.44
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Probabilistic Logic Programming Sato’s distribution semantics

Expressive Power

All languages under the distribution semantics have the same expressive power
LPADs have the most general syntax
There are transformations that can convert each one into the others
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Probabilistic Logic Programming Sato’s distribution semantics

Reasoning Tasks

Inference: we want to compute the probability of a query given the model and, possibly,
some evidence
Weight learning: we know the structural part of the model (the logic formulas) but not the
numeric part (the weights) and we want to infer the weights from data
Structure learning we want to infer both the structure and the weights of the model from
data
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Examples

Examples

Throwing coins http://cplint.eu/e/coin.swinb

heads(Coin):1/2 ; tails(Coin):1/2 :-
toss(Coin),\+biased(Coin).

heads(Coin):0.6 ; tails(Coin):0.4 :-
toss(Coin),biased(Coin).

fair(Coin):0.9 ; biased(Coin):0.1.
toss(coin).

Russian roulette with two guns http://cplint.eu/e/trigger.pl

death:1/6 :- pull_trigger(left_gun).
death:1/6 :- pull_trigger(right_gun).
pull_trigger(left_gun).
pull_trigger(right_gun).
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Examples

Examples

Mendel’s inheritance rules for pea plants http://cplint.eu/e/mendel.pl

color(X,purple):-cg(X,_A,p).
color(X,white):-cg(X,1,w),cg(X,2,w).
cg(X,1,A):0.5 ; cg(X,1,B):0.5 :-

mother(Y,X),cg(Y,1,A),cg(Y,2,B).
cg(X,2,A):0.5 ; cg(X,2,B):0.5 :-

father(Y,X),cg(Y,1,A),cg(Y,2,B).

Probability of paths http://cplint.eu/e/path.swinb

path(X,X).
path(X,Y):-path(X,Z),edge(Z,Y).
edge(a,b):0.3.
edge(b,c):0.2.
edge(a,c):0.6.
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Examples

Encoding Bayesian Networks

Burglary Earthquake

Alarm

alarm t f
b=t,e=t 1.0 0.0
b=t,e=f 0.8 0.2
b=f,e=t 0.8 0.2
b=f,e=f 0.1 0.9

burg t f
0.1 0.9

earthq t f
0.2 0.8

http://cplint.eu/e/alarm.pl

burg(t):0.1 ; burg(f):0.9.
earthq(t):0.2 ; earthq(f):0.8.
alarm(t):-burg(t),earthq(t).
alarm(t):0.8 ; alarm(f):0.2:-burg(t),earthq(f).
alarm(t):0.8 ; alarm(f):0.2:-burg(f),earthq(t).
alarm(t):0.1 ; alarm(f):0.9:-burg(f),earthq(f).
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Examples

Applications

Link prediction: given a (social) network, compute the probability of the existence of a link
between two entities (UWCSE)

advisedby(X, Y) :0.7 :-
publication(P, X),
publication(P, Y),
student(X).
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Examples

Applications

Classify web pages on the basis of the link structure (WebKB)

coursePage(Page1): 0.3 :- linkTo(Page2,Page1),coursePage(Page2).
coursePage(Page1): 0.6 :- linkTo(Page2,Page1),facultyPage(Page2).
...
coursePage(Page): 0.9 :- has(’syllabus’,Page).
...
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Examples

Applications

Entity resolution: identify identical entities in text or databases

samebib(A,B):0.9 :-
samebib(A,C), samebib(C,B).
sameauthor(A,B):0.6 :-

sameauthor(A,C), sameauthor(C,B).
sametitle(A,B):0.7 :-

sametitle(A,C), sametitle(C,B).
samevenue(A,B):0.65 :-

samevenue(A,C), samevenue(C,B).
samebib(B,C):0.5 :-

author(B,D),author(C,E),sameauthor(D,E).
samebib(B,C):0.7 :-

title(B,D),title(C,E),sametitle(D,E).
samebib(B,C):0.6 :-

venue(B,D),venue(C,E),samevenue(D,E).
samevenue(B,C):0.3 :-

haswordvenue(B,logic),
haswordvenue(C,logic).

...
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Examples

Applications

Chemistry: given the chemical composition of a substance, predict its mutagenicity or its
carcenogenicity

active(A):0.4 :-
atm(A,B,c,29,C),
gteq(C,-0.003),
ring_size_5(A,D).

active(A):0.6:-
lumo(A,B), lteq(B,-2.072).

active(A):0.3 :-
bond(A,B,C,2),
bond(A,C,D,1),
ring_size_5(A,E).

active(A):0.7 :-
carbon_6_ring(A,B).

active(A):0.8 :-
anthracene(A,B).

...
F. Riguzzi (UNIFE) PILP-ECAI20 24 / 129



Examples

Applications

Medicine: diagnose diseases on the basis of patient information (Hepatitis), influence of
genes on HIV, risk of falling of elderly people
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Inference

Inference for PLP under DS

Computing the probability of a query (no evidence)
Knowledge compilation:

compile the program to an intermediate representation
Binary Decision Diagrams (BDD) (ProbLog [De Raedt et al. IJCAI07], cplint [Riguzzi
AIIA07,Riguzzi LJIGPL09], PITA [Riguzzi & Swift ICLP10])
deterministic, Decomposable Negation Normal Form circuit (d-DNNF) (ProbLog2 [Fierens et
al. TPLP15])
Sentential Decision Diagrams (ProbLog2 [Fierens et al. TPLP15])

compute the probability by weighted model counting
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Inference

Inference for PLP under DS

Bayesian Network based:
Convert to BN
Use BN inference algorithms (CVE [Meert et al. ILP09])

Lifted inference
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Inference Inference by Knowledge Compilation

Knowledge Compilation

Assign Boolean random variables to the probabilistic rules
Given a query Q, compute its explanations, assignments to the random variables that are
sufficient for entailing the query
Let K be the set of all possible explanations
Build a Boolean formula F pQq

Transform it into an intermediate representation: BDD, d-DNNF, SDD
Perform Weighted Model Counting (WMC)
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Inference Inference by Knowledge Compilation

ProbLog

sneezingpX q Ð flupX q, flu_sneezingpX q.
sneezingpX q Ð hay_feverpX q, hay_fever_sneezingpX q.
flupbobq.
hay_feverpbobq.
C1 “ 0.7 :: flu_sneezingpX q.
C2 “ 0.8 :: hay_fever_sneezingpX q.
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Inference Inference by Knowledge Compilation

Definitions

Composite choice κ: consistent set of atomic choices pCi , θj , lq with l P t1, 2u, example
κ “ tpC1, tX {bobu, 1qu
Set of worlds compatible with κ: ωκ “ twσ|κ Ď σu

Explanation κ for a query Q: Q is true in every world of ωκ, example Q “ sneezingpbobq
and κ “ tpC1, tX {bobu, 1qu
A set of composite choices K is covering with respect to Q: every world w in which Q is
true is such that w P ωK where ωK “

Ť

κPK ωκ

Example:
K1 “ ttpC1, tX {bobu, 1qu, tpC2, tX {bobu, 1quu (1)

is covering for sneezingpbobq.
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Inference Inference by Knowledge Compilation

Finding Explanations

All explanations for the query are collected
ProbLog: source to source transformation for facts, use of dynamic database
cplint (PITA): source to source transformation, addition of an argument to predicates
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Inference Inference by Knowledge Compilation

Explanation Based Inference Algorithm

K “ set of explanations found for Q, the probability of Q is given by the probability of the
formula

fK pXq “
ł

κPK

ľ

pCi ,θj ,lqPκ

pXCiθj “ lq

where XCiθj is a random variable whose domain is 1, 2 and PpXCiθj “ lq “ Πi ,l

Binary domain: we use a Boolean variable Xij to represent pXCiθj “ 1q

Xij represents pXCiθj “ 2q

F. Riguzzi (UNIFE) PILP-ECAI20 32 / 129



Inference Inference by Knowledge Compilation

Example

A set of covering explanations for sneezingpbobq is K “ tκ1, κ2u
κ1 “ tpC1, tX {bobu, 1qu κ2 “ tpC2, tX {bobu, 1qu
K “ tκ1, κ2u
fK pXq “ pXC1tX {bobu “ 1q _ pXC2tX {bobu “ 1q.
X11 “ pXC1tX {bobu “ 1q X21 “ pXC2tX {bobu “ 1q
fK pXq “ X11 _ X21.
PpfK pXqq “ PpX11 _ X21q “ PpX11q ` PpX21q ´ PpX11qPpX21q

In order to compute the probability, we must make the explanations mutually exclusive
Compute the Weighted Model Count
[De Raedt at. IJCAI07]: Binary Decision Diagram (BDD)
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Inference Inference by Knowledge Compilation

Binary Decision Diagrams

A BDD for a function of Boolean variables is a rooted graph that has one level for each
Boolean variable
A node n in a BDD has two children: one corresponding to the 1 value of the variable
associated with n and one corresponding the 0 value of the variable
The leaves store either 0 or 1.

X11

X21

1

0

X11 X21

F. Riguzzi (UNIFE) PILP-ECAI20 34 / 129



Inference Inference by Knowledge Compilation

Binary Decision Diagrams

BDDs can be built by combining simpler BDDs using Boolean operators
While building BDDs, simplification operations can be applied that delete or merge nodes
Merging is performed when the diagram contains two identical sub-diagrams
Deletion is performed when both arcs from a node point to the same node
A reduced BDD often has a much smaller number of nodes with respect to the original
BDD
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Inference Inference by Knowledge Compilation

Binary Decision Diagrams

X11

X21

1

0

X11 X21

fK pXq “ X11 ˆ f X11
K pXq ` X11 ˆ f X11

K pXq

PpfK pXqq “ PpX11qPpf
X11
K pXqq ` p1´ PpX11qqPpf

X11
K pXqq

PpfK pXqq “ 0.7 ¨ Ppf X11
K pXqq ` 0.3 ¨ Ppf X11

K pXqq
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Inference Inference by Knowledge Compilation

Probability from a BDD

Dynamic programming algorithm [De Raedt et al IJCAI07]
1: function Prob(node)
2: if node is a terminal then
3: return 1
4: else
5: if TableProbpnode.pointerq ‰ null then
6: return TableProbpnodeq
7: else
8: p0ÐProb(child0pnodeq)
9: p1ÐProb(child1pnodeq)
10: if child0pnodeq.comp then
11: p0Ð p1´ p0q
12: end if
13: Let π be the probability of being true of varpnodeq
14: Res Ð p1 ¨ π ` p0 ¨ p1´ πq
15: Add node.pointer Ñ Res to TableProb
16: return Res
17: end if
18: end if
19: end function
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Inference Inference by Knowledge Compilation

Logic Programs with Annotated Disjunctions

C1 “ strong_sneezingpX q : 0.3_moderate_sneezingpX q : 0.5 Ð flupX q.
C2 “ strong_sneezingpX q : 0.2_moderate_sneezingpX q : 0.6 Ð hay_feverpX q.
C3 “ flupbobq.
C4 “ hay_feverpbobq.

Distributions over the head of rules
More than two head atoms
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Inference Inference by Knowledge Compilation

Example

A set of covering explanations for strong_sneezingpbobq is K “ tκ1, κ2u
κ1 “ tpC1, tX {bobu, 1qu
κ2 “ tpC2, tX {bobu, 1qu
X11 “ XC1tX {bobu

X21 “ XC2tX {bobu

fK pXq “ pX11 “ 1q _ pX21 “ 1q.
PpfX q “ PpX11 “ 1q ` PpX21 “ 1q ´ PpX11 “ 1qPpX21 “ 1q

To make the explanations mutually exclusive: Multivalued Decision Diagram (MDD)
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Inference Inference by Knowledge Compilation

Multivalued Decision Diagrams

X11

X21

1

0

1

1
2

3
2

3

fK pXq “
ł

lP|X11|

pX11 “ lq ^ f X11“l
K pXq

PpfK pXqq “
ÿ

lP|X11|

PpX11 “ lqPpf X11“l
K pXqq

fK pXq “ pX11 “ 1q ^ f X11“1
K pXq ` pX11 “ 2q ^ f X11“2

K pXq ` pX11 “ 3q ^ f X11“3
K pXq

fK pXq “ 0.3 ¨ Ppf X11“1
K pXqq ` 0.5 ¨ Ppf X11“2

K pXqq ` 0.2 ¨ Ppf X11“3
K pXqq
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Inference Inference by Knowledge Compilation

Manipulating Multivalued Decision Diagrams

Use an MDD package
Convert to BDD, use a BDD package: BDD packages more developed, more efficient
Conversion to BDD

Log encoding
Binary splits: more efficient

F. Riguzzi (UNIFE) PILP-ECAI20 41 / 129



Inference Inference by Knowledge Compilation

Transformation to a Binary Decision Diagram

For a variable Xij having n values, we use n ´ 1 Boolean variables Xij1, . . . ,Xijn´1

Xij “ l for l “ 1, . . . n ´ 1: Xij1 ^ Xij2 ^ . . .^ Xijl´1 ^ Xijl ,
Xij “ n: Xij1 ^ Xij2 ^ . . .^ Xijn´1.

Parameters: PpXij1q “ PpXij “ 1q . . .PpXijlq “
PpXij“lq

śl´1
m“1p1´PpXijmqq

.

X111

X211

1

0

X111 X211
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Inference Inference by Knowledge Compilation

Examples of BDDs

http://cplint.eu/e/sneezing_simple.pl
http://cplint.eu/e/sneezing.pl
http://cplint.eu/e/path.swinb
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Inference Inference by Knowledge Compilation

Conditional Inference

Computing Ppq|eq

Use Ppq|eq “ Ppq,eq
Ppeq

Build BDDs for e (BDDe) and q (BDDq)
The BDD for q, e is BDDq,e “ BDDe ^ BDDq

Ppq, eq “
PpBDDq,eq

PpBDDeq

Example: http://cplint.eu/e/threesideddice.pl

F. Riguzzi (UNIFE) PILP-ECAI20 44 / 129

http://cplint.eu/e/threesideddice.pl


Inference ProbLog2

ProbLog2

ProbLog2 allows probabilistic intensional facts of the form

Π :: f pX1,X2, . . . ,Xnq Ð Body

with Body a conjunction of calls to non-probabilistic facts that define the domains of the
variables X1,X2, . . . ,Xn.
ProbLog2 allows annotated disjunctions in LPAD style of the form

Πi1 :: hi1 ; . . . ; Πini :: hini Ð bi1, . . . , bimi

which are equivalent to an LPAD clauses of the form

hi1 : Πi1 ; . . . ; hini : Πini Ð bi1, . . . , bimi

and are handled by translating them into Boolean probabilistic facts
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Inference ProbLog2

ProbLog2

ProbLog2 converts the program into a weighted Boolean formula and then performs
Weighted Model Counting (WMC)
Weighted Boolean formula: a formula over a set of variables V “ tV1, . . . ,Vnu associated
with a weight function wp¨q that assigns a real number to each literal built on V.
Weight of assignment ω “ tV1 “ v1, . . . ,Vn “ vnu:

wpωq “
ź

lPω

wplq

Given weighted Boolean formula φ, the weighted model count of φ, WMCVpφq, with
respect to the set of variables V, is

WMCVpφq “
ÿ

ωPSAT pφq

wpωq.

where SAT pφq is the set of assignments satisfying φ.
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Inference ProbLog2

ProbLog2

ProbLog2 converts the program into a weighted formula in three stesp:
1 Grounding P yielding a program Pg , taking into account q and e in order to consider only

the part of the program that is relevant to the query given the evidence.
2 Converting the ground rules in Pg to an equivalent Boolean formula φr
3 Taking into account the evidence and defining a weight function. A Boolean formula φe

representing the evidence is conjoined with φr obtaining formula φ and a weight function is
defined for all atoms in φ.
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Inference ProbLog2

Example

Program

0.1 :: burglary .
0.2 :: earthquake.
0.7 :: hears_alarmpX q Ð personpX q.
alarm Ð burglary .
alarm Ð earthquake.
callspX q Ð alarm, hears_alarmpX q.
personpmaryq.
personpjohnq.

q “ burglary e “ callspjohnq

Relevant ground program

0.1 :: burglary .
0.2 :: earthquake.
0.7 :: hears_alarmpjohnq.
alarm Ð burglary .
alarm Ð earthquake.
callspjohnq Ð alarm, hears_alarmpjohnq.

The relevant ground program is now converted
to an equivalent Boolean formula. The
conversion is not merely syntactical as logic
programming makes the Closed World
Assumption while first order logic doesn’t.
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Inference ProbLog2

Example

alarm Ø burglary _ earthquake
callspjohnq Ø alarm ^ hears_alarmpjohnq
callspjohnq

The weight function wp¨q is defined as: for
each probabilistic fact Π :: f , f is assigned
weight Π and  f is assigned weight 1´Π.
All the other literals are assigned weight 1.
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Inference ProbLog2

Knowledge Compilation

By knowledge compilation, ProbLog2 translates φ to a smooth d-DNNF Boolean formula
A NNF formula is a rooted directed acyclic graph in which each leaf node is labeled with a
literal and each internal node is labeled with a conjunction or disjunction.
Smooth d-DNNF satisfy also

Decomposability (D): for every conjunction node, no couple of children of the node has any
variable in common
Determinism (d): for every disjunction node, every couple of children represents formulas
that are logically inconsistent with each other.
Smoothness: for every disjunction node, all children use exactly the same set of variables.
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Inference ProbLog2

Knowledge Compilation

Compilers for d-DNNF usually start from formulas in CNF (c2d [Darwiche ECAI04],
Dsharp [Muise et al CAI12])

alarm Ø burglary _ earthquake
callspjohnq Ø alarm ^ hears_alarmpjohnq
callspjohnq

^

callspjohnq hears_alarnpjohnq alarm_

^ ^

 burglary _

earthqauke

burglary

 earthqauke
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Inference ProbLog2

d-DNNF Circuit

˚p0.196q

˚p1.0q

λpcallspjohnqq 1.0

˚p0.7q

λphears_alarnpjohnqq 0.7

˚p1.0q

λpalarmq 1.0

`p0.28q

˚p0.18q ˚p0.1q

˚p0.9q

λp burglaryq 0.9

`p1.0q

˚p0.2q

λpearthqaukeq 0.2

˚p0.1q

λpburglaryq 0.1 ˚p0.8q

λp earthqaukeq 0.8
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Inference ProbLog2

Knowledge Compilation

This transformation is equivalent to transforming the weighted formula into

WMC pφq “
ÿ

ωPSAT pφq

ź

lPω

wplqλplq “
ÿ

ωPSAT pφq

ź

lPω

wplq
ź

lPω

λplq

Given the arithmetic circuit, the WMC can be computed by evaluating the circuit
bottom-up after having assigned the value 1 to all the indicator variables and their weight
to the literals
WMCVpφq “ Ppeq: The value computed for the root is the probability of evidence
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Inference ProbLog2

Knowledge Compilation

It is possible to compute the probability of any evidence, provided that it extends the
initial evidence
To compute Ppe, l1 . . . lnq for any conjunction of literals l1, . . . , ln it is enough to set the
indicator variables as λpli q “ 1, λp li q “ 0 (where   a “ a) and λplq “ 1 for the other
literals l , and evaluate the circuit.
In fact the value f pl1 . . . lnq of the root node will give:

f pl1 . . . lnq “
ÿ

ωPSAT pφq

ź

lPω

wplq
ź

lPω

"

1, if tl1 . . . lnu Ď ω
0, otherwise

“

ÿ

ωPSAT pφq,tl1...lnuĎω

ź

lPω

wplq “

Ppe, l1 . . . lnq

So in theory one could build the circuit for formula φr only,
The formula for evidence however usually simplifies the compilation process
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Inference ProbLog2

Conditional Queries

To answer conditional queries Ppq|eq use Ppq|eq “ Ppq,eq
Ppeq

Ppeq “ WMCpφq

Ppq, eq “ f pqq
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Inference ProbLog2

SDDs

More recently, ProbLog2 has also included the possibility of compiling the Boolean
function to Sentential Decision Diagrams (SDDs)

7

¬burglary earthquake burglary 1

5

hears_alarm(john)  ¬hears_alarm(john) 0

3

   0

1

alarm ¬calls(john) ¬alarm 1

1

alarm calls(john) ¬alarm 0

An SDD [Darwiche 11] contains two types of nodes: decision nodes, represented as circles,
and elements, represented as paired boxes.
Elements are the children of decision nodes and each box in an element can contain a
pointer to a decision node or a terminal node, either a literal or the constants 0 or 1.
A decision node with children pp1, s1q, . . . , ppn, snq represents the function
pp1 ^ s1q _ . . ._ ppn ^ snq.
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Parameter Learning

Reasoning Tasks

Inference: we want to compute the probability of a query given the model and, possibly,
some evidence
Weight learning: we know the structural part of the model (the logic formulas) but not the
numeric part (the weights) and we want to infer the weights from data
Structure learning we want to infer both the structure and the weights of the model from
data
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Parameter Learning

Parameter Learning

Definition (Learning Problem)

Given an LPAD P with unknown parameters and two sets E` “ te1, . . . , eT u and
E´ “ teT`1, . . . , eQu of ground atoms (positive and negative examples), find the value of the
parameters Π of P that maximize the likelihood of the examples, i.e., solve

arg max
Π

PpE`,„E´q “ arg max
Π

T
ź

t“1

Ppetq
Q

ź

t“T`1

Pp„etq.

Predicates for the atoms in E` and E´: target because the objective is to be able to better
predict the truth value of atoms for them.
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Parameter Learning

Parameter Learning

Looking for the maximum likelihood parameters of the disjunctive clauses
The random variables associated to clauses not observed in the dataset, which contains
only derived atoms.
Relative frequency cannot be used
Expectation Maximization
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Parameter Learning EMBLEM

Parameter Learning for ProbLog and LPADs

[Thon et al. ECML 2008] proposed an adaptation of EM for CPT-L, a simplified version of
LPADs
The algorithm computes the counts efficiently by repeatedly traversing the BDDs
representing the explanations
[Ishihata et al. ILP 2008] independently proposed a similar algorithm
LFI-ProbLog [Gutamnn et al. ECML 2011]: EM for ProbLog on BDDs
EMBLEM [Riguzzi & Bellodi IDA 2013] adapts [Ishihata et al. ILP 2008] to LPADs
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Parameter Learning EMBLEM

Parameter Learning

Typically, the LPAD P has two components:
a set of rules, annotated with parameters
a set of certain ground facts, representing background knowledge on individual cases of a
specific world

Useful to provide information on more than one world: a background knowledge and sets
of positive and negative examples for each world
Description of one world: mega-interpretation or mega-example
Positive examples encoded as ground facts of the mega-interpretation and the negative
examples as suitably annotated ground facts (such as negpaq for negative example a)
The task then is maximizing the product of the likelihood of the examples for all
mega-interpretations.
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Parameter Learning EMBLEM

Example: Bongard Problems

Introduced by the Russian scientist M. Bongard
Pictures containing shapes with different properties, such as small, large, pointing down,
. . . and different relationships between them, such as inside, above, . . .
Some positive and some negative
Problem: discriminate between the two classes.
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Parameter Learning EMBLEM

Data

Each mega-example encodes a single picture
Models
begin(model(2)).
pos.
triangle(o5).
config(o5,up).
square(o4).
in(o4,o5).
circle(o3).
triangle(o2).
config(o2,up).
in(o2,o3).
triangle(o1).
config(o1,up).
end(model(2)).

begin(model(3)).
neg(pos).
circle(o4).
circle(o3).
in(o3,o4).
....

Keys
pos(2).
triangle(2,o5).
config(2,o5,up).
square(2,o4).
in(2,o4,o5).
circle(2,o3).
triangle(2,o2).
config(2,o2,up).
in(2,o2,o3).
triangle(2,o1).
config(2o1,up).

neg(pos(3)).
circle(3,o4).
circle(3,o3).
in(3,o3,o4).
....
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Parameter Learning EMBLEM

Program

Theory for parameter learning and background

pos:0.5 :-
circle(A),
in(B,A).

pos:0.5 :-
circle(A),
triangle(B).

The task is to tune the two parameters
http://cplint.eu/e/bongard.pl
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Parameter Learning EMBLEM

EMBLEM

The interpretations record the truth value of ground atoms, not of the random variables
Unseen data: relative frequency can’t be used
Expectation-Maximization algorithm:

Expectation step: the distribution of the unseen variables in each instance is computed given
the observed data
Maximization step: new parameters are computed from the distributions using relative
frequency
End when likelihood does not improve anymore
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Parameter Learning EMBLEM

EMBLEM

EM over Bdds for probabilistic Logic programs Efficient Mining [Bellodi and Riguzzi IDA
2013]
Input: an LPAD; logical interpretations (data); target predicate(s)
All ground atoms in the interpretations for the target predicate(s) correspond to as many
queries
BDDs encode the explanations for each query
Expectations computed with two passes over the BDDs
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Parameter Learning EMBLEM

EMBLEM

EMBLEM encodes multi-valued random variable with Boolean random variables
Variable Xij associated with grounding θj of clause Ci having n values.
Encoding using n ´ 1 Boolean variables Xij1, . . . ,Xijn´1.
Equation Xij “ k for k “ 1, . . . n ´ 1 represented by

Xij1 ^ . . .^ Xijk´1 ^ Xijk

Equation Xij “ n represented by

Xij1 ^ . . .^ Xijn´1.

Parameters:

PpXij1q “ PpXij “ 1q
. . .

PpXijkq “
PpXij “ kq

śk´1
l“1 p1´ PpXijk´1qq
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Parameter Learning EMBLEM

EMBLEM

Let Xijk for k “ 1, . . . , ni ´ 1 and j P gpiq be the Boolean random variables associated
with grounding Ciθj of clause Ci of P where ni is the number of head atoms of Ci and
gpiq is the set of indices of grounding substitutions of Ci .

F. Riguzzi (UNIFE) PILP-ECAI20 68 / 129



Parameter Learning EMBLEM

Example

http://cplint.eu/e/epidemic.pl
C1 “ epidemic : 0.6 ; pandemic : 0.3Ð flupX q, cold .
C2 “ cold : 0.7.
C3 “ flupdavidq.
C4 “ fluprobertq.

Clause C1: two groundings, first: X111 and X112, latter: X121 and X122.
C2: single grounding, random variable X211.

X111 n1

X121 n2

X211 n3

1 0
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Parameter Learning EMBLEM

EMBLEM

EMBLEM alternates between the two phases:
Expectation: compute Ercik0|es and Ercik1|es for all examples e, rules Ci in P and
k “ 1, . . . , ni ´ 1, where cikx is the number of times a variable Xijk takes value x for
x P t0, 1u, with j in gpiq.

Ercikx |es “
ÿ

jPgpiq

PpXijk “ x |eq.

Maximization: compute πik for all rules Ci and k “ 1, . . . , ni ´ 1.

πik “

ř

ePE Ercik1|es
ř

qPE Ercik0|es ` Ercik1|es
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Parameter Learning EMBLEM

EMBLEM

PpXijk “ x |eq is given by PpXijk “ x |eq “
PpXijk“x ,eq

Ppeq .

Consider a BDD for an example e built by applying only the merge rule
X111 n1

X121 n12 n2

X211 n3 n13

1 0
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Parameter Learning EMBLEM

EMBLEM

Ppeq is given by the sum of the probabilities of all the paths in the BDD from the root to
a 1 leaf
To compute PpXijk “ x , eq we need to consider only the paths passing through the x-child
of a node n associated with variable Xijk so

PpXijk “ x , eq “
ÿ

nPNpXijk q

πikxF pnqBpchildxpnqq “
ÿ

nPNpXijk q

expnq

F pnq is the forward probability, the probability mass of the paths from the root to n,
Bpnq is the backward probability, the probability mass of paths from n to the 1 leaf.
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Parameter Learning EMBLEM

EMBLEM

BDD obtained by also applying the deletion rule: paths where there is no node associated
with Xijk can also contribute to PpXijk “ x , eq.
Suppose the BDD was obtained deleting node m 0-child of n associated with variable Xijk

Outgoing edges of m both point to child0pnq.
The probability mass of the two paths that were merged was e0pnqp1´ πikq and e0pnqπik
for the paths passing through the 0-child and 1-child of m respectively
The first quantity contributes to PpXijk “ 0, eq, the latter to PpXijk “ 1, eq.
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Parameter Learning EMBLEM

GetForward
1: procedure GetForward(root)
2: F prootq “ 1
3: F pnq “ 0 for all nodes
4: for l “ 1 to levels do Ź levels is the number of levels of the BDD rooted at root
5: Nodesplq “ H
6: end for
7: Nodesp1q “ trootu
8: for l “ 1 to levels do
9: for all node P Nodesplq do
10: let Xijk be vpnodeq, the variable associated with node
11: if child0pnodeq is not terminal then
12: F pchild0pnodeqq “ F pchild0pnodeqq ` F pnodeq ¨ p1´ πik )
13: add child0pnodeq to Nodesplevelpchild0pnodeqqq
14: end if
15: if child1pnodeq is not terminal then
16: F pchild1pnodeqq “ F pchild1pnodeqq ` F pnodeq ¨ πik
17: add child1pnodeq to Nodesplevelpchild1pnodeqqq
18: end if
19: end for
20: end for
21: end procedure
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Parameter Learning EMBLEM

GetBackward

1: function GetBackward(node)
2: if node is a terminal then
3: return valuepnodeq
4: else
5: let Xijk be vpnodeq
6: Bpchild0pnodeqq “GetBackward(child0pnodeq)
7: Bpchild1pnodeqq “GetBackward(child1pnodeq)
8: e0pnodeq “ F pnodeq ¨ Bpchild0pnodeqq ¨ p1´ πik q
9: e1pnodeq “ F pnodeq ¨ Bpchild1pnodeqq ¨ πik
10: η0pi , kq “ η0pi , kq ` e0pnodeq
11: η1pi , kq “ η1pi , kq ` e1pnodeq
12: take into account deleted paths
13: return Bpchild0pnodeqq ¨ p1´ πik q ` Bpchild1pnodeqq ¨ πik
14: end if
15: end function
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Parameter Learning EMBLEM

EMBLEM

1: function EMBLEM(E ,P, ε,δ)
2: build BDDs
3: LL “ ´inf
4: repeat
5: LL0 “ LL
6: LL “ Expectation(BDDs)
7: Maximization
8: until LL´ LL0 ă ε_ LL´ LL0 ă ´LL ¨ δ
9: return LL, πik for all i , k
10: end function
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Parameter Learning EMBLEM

EMBLEM
1: function Expectation(BDDs)
2: LL “ 0
3: for all BDD P BDDs do
4: for all i do
5: for k “ 1 to ni ´ 1 do
6: η0pi , kq “ 0; η1pi , kq “ 0
7: end for
8: end for
9: for all variables X do
10: ςpX q “ 0
11: end for
12: GetForward(rootpBDDq)
13: Prob=GetBackward(rootpBDDq)
14: take into account deleted paths
15: for all i do
16: for k “ 1 to ni ´ 1 do
17: Ercik0s “ Ercik0s ` η0pi , kq{Prob
18: Ercik1s “ Ercik1s ` η1pi , kq{Prob
19: end for
20: end for
21: LL “ LL` logpProbq
22: end for
23: return LL
24: end function
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Parameter Learning EMBLEM

EMBLEM

1: procedure Maximization
2: for all i do
3: for k “ 1 to ni ´ 1 do
4: πik “

Ercik1s
Ercik0s`Ercik1s

5: end for
6: end for
7: end procedure
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Parameter Learning EMBLEM

Example

X111 n1
F=1

0.6

0.4

X121 n2

0.6

0.4X211 n3

0.7

0.3

1 0
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Parameter Learning EMBLEM

Example

X111 n1
F=1

0.6

0.4

X121 n2
F=0.4

0.6

0.4X211 n3

0.7

0.3

1 0
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Parameter Learning EMBLEM

Example

X111 n1
F=1

0.6

0.4

X121 n2
F=0.4

0.6

0.4X211 n3
F=0.84

0.7

0.3

1 0
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Parameter Learning EMBLEM

Example

X111 n1
F=1

0.6

0.4

X121 n2
F=0.4

0.6

0.4X211 n3
F=0.84
B=0.7

0.7

0.3

1 0
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Parameter Learning EMBLEM

Example

X111 n1
F=1

0.6

0.4

X121 n2
F=0.4
B=0.42

0.6

0.4X211 n3
F=0.84
B=0.7

0.7

0.3

1 0
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Parameter Learning EMBLEM

Example

X111 n1
F=1
B=0.588

0.6

0.4

X121 n2
F=0.4
B=0.42

0.6

0.4X211 n3
F=0.84
B=0.7

0.7

0.3

1 0
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Parameter Learning LFI-ProbLog

ProbLog2

ProbLog2 includes LFI-ProbLog [Gutmann et al PKDD 2011] that learns the parameters of
ProbLog programs from partial interpretations.
Partial interpretations specify the truth value of some but not necessarily all ground atoms.
I “ xIT , IF y: the atoms in IT are true and those in IF are false.
I “ xIT , IF y can be associated with a conjunction qpIq “

Ź

aPIT
a^

Ź

aPIF
„a.
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Parameter Learning LFI-ProbLog

LFI-ProbLog

Definition (LFI-ProbLog learning problem)

Given a ProbLog program P with unknown parameters and a set E “ tI1, . . . , IT u of partial
interpretations (the examples), find the value of the parameters Π of P that maximize the
likelihood of the examples, i.e., solve

arg max
Π

PpE q “ arg max
Π

T
ź

t“1

PpqpItqq
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Parameter Learning LFI-ProbLog

LFI-ProbLog

EM algorithm
A d-DNNF circuit for each partial interpretation I “ xIT , IF y by using the ProbLog2
inference algorithm with the evidence qpIq.
A Boolean random variable Xij is associated with each ground probabilistic fact fiθj .
For each example I, variable Xij and x P t0, 1u, LFI-ProbLog computes PpXij “ x |Iq.
LFI-ProbLog computes PpXij “ x |Iq by computing PpXij “ x , Iq using Procedure CircP
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Parameter Learning LFI-ProbLog

Example of a d-DNNF Formula

alarm Ø burglary _ earthquake
callspjohnq Ø alarm ^ hears_alarmpjohnq
callspjohnq

^

callspjohnq hears_alarnpjohnq alarm_

^ ^

 burglary _

earthqauke

burglary

 earthqauke
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Parameter Learning LFI-ProbLog

Example of a d-DNNF Circuit

˚p0.196q

˚p1.0q

λpcallspjohnqq 1.0

˚p0.7q

λphears_alarnpjohnqq 0.7

˚p1.0q

λpalarmq 1.0

`p0.28q

˚p0.18q ˚p0.1q

˚p0.9q

λp burglaryq 0.9

`p1.0q

˚p0.2q

λpearthqaukeq 0.2

˚p0.1q

λpburglaryq 0.1 ˚p0.8q

λp earthqaukeq 0.8
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Parameter Learning LFI-ProbLog

Computing Expectations

WMC pφq “
ÿ

ωPSAT pφq

ź

lPω

wplqλl “
ÿ

ωPSAT pφq

ź

lPω

wplq
ź

lPω

λl

Ppeq “
ÿ

ωPSAT pφq

ź

lPω

wplq

We want to compute Ppq|eq for all atoms q P Q.
Partial derivative Bf

Bλq
for an atom q:

Bf

Bλq
“

ÿ

ωPSAT pφq,qPω

ź

lPω

wplq
ź

lPω,l‰q

λl “

ÿ

ωPSAT pφq,qPω

ź

lPω

wplq “

Ppe, qq
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Parameter Learning LFI-ProbLog

Computing Expectations

If we compute the partial derivatives of f for all indicator variables λq, we get Ppq, eq for
all atoms q.
vpnq: value of each node n

dpnq “ Bvprq
Bvpnq .

dprq “ 1
By the chain rule of calculus, for an arbitrary non-root node n with p indicating its parents

dpnq “
ÿ

p

Bvprq

Bvppq

Bvppq

Bvpnq
“

ÿ

p

dppq
Bvppq

Bvpnq
.
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Parameter Learning LFI-ProbLog

Computing Expectations

If p is a multiplication node with n1 indicating its children

Bvppq

Bvpnq
“
Bvpnq

ś

n1‰n vpn1q

Bvpnq
“

ź

n1‰n

vpn1q.

If p is an addition node with n1 indicating its children

Bvppq

Bvpnq
“
Bvpnq `

ř

n1‰n vpn1q

Bvpnq
“ 1.

`p an addition parent of n and ˚p a multiplication parent of n:

dpnq “
ÿ

`p

dp`pq `
ÿ

˚p

dp˚pq
ź

n1‰n

vpn1q.

If vpnq ‰ 0.
dpnq “

ÿ

`p

dp`pq `
ÿ

˚p

dp˚pqvp˚pq{vpnq.

F. Riguzzi (UNIFE) PILP-ECAI20 92 / 129



Parameter Learning LFI-ProbLog

CircP

1: procedure CircP(circuit)
2: assign values to leaves
3: for all non-leaf node n with children c (visit children before parents) do
4: if n is an addition node then
5: vpnq Ð

ř

c vpcq
6: else
7: vpnq Ð

ś

c vpcq
8: end if
9: end for
10: dprq Ð 1, dpnq “ 0 for all non-root nodes
11: for all non-root node n (visit parents before children) do
12: for all parents p of n do
13: if p is an addition parent then
14: dpnq “ dpnq ` dppq
15: else
16: dpnq Ð dpnq ` dppqvppq{vpnq
17: end if
18: end for
19: end for
20: end procedure
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Structure Learning

Reasoning Tasks

Inference: we want to compute the probability of a query given the model and, possibly,
some evidence
Weight learning: we know the structural part of the model (the logic formulas) but not the
numeric part (the weights) and we want to infer the weights from data
Structure learning we want to infer both the structure and the weights of the model from
data
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Structure Learning

Structure Learning for LPADs

Given a set of interpretations (data)
Find the model and the parameters that maximize the probability of the data
(log-likelihood)
SLIPCOVER: Structure LearnIng of Probabilistic logic program by searching OVER the
clause space [Riguzzi & Bellodi TPLP 2015]

1 Beam search in the space of clauses to find the promising ones
2 Greedy search in the space of probabilistic programs guided by the LL of the data.

Parameter learning by means of EMBLEM
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Structure Learning SLIPCOVER

SLIPCOVER

Cycle on the set of predicates that can appear in the head of clauses, either target or
background
For each predicate, beam search in the space of clauses
The initial set of beams is generated by building a set of bottom clauses as in Progol
[Muggleton NGC 1995]
Bottom clause: most specific clause covering an example
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Structure Learning SLIPCOVER

Language Bias

Mode declarations as in Progol
Syntax

modeh(RecallNumber,PredicateMode).
modeb(RecallNumber,PredicateMode).

RecallNumber can be a number or *. Usually *. Maximum number of answers to queries
to include in the bottom clause
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Structure Learning SLIPCOVER

Mode Declarations

PredicateMode template of the form:

p(ModeType, ModeType,...)

ModeType can be:
Simple:

+T input variables of type T;
-T output variables of type T; or
#T, -#T constants of type T.

Structured: of the form f(..) where f is a function symbol and every argument can be
either simple or structured. For example:
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Structure Learning SLIPCOVER

Mode Declarations

modeb(1,mem(+number,+list)).
modeb(1,dec(+integer,-integer)).
modeb(1,mult(+integer,+integer,-integer)).
modeb(1,plus(+integer,+integer,-integer)).
modeb(1,(+integer)=(#integer)).
modeb(*,has_car(+train,-car))
modeb(1,mem(+number,[+number|+list])).
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Structure Learning SLIPCOVER

Bottom Clause K

Most specific clause covering an example e

Form: e Ð B

B : set of ground literals that are true regarding the example e

B obtained by considering the constants in e and querying the data for true atoms
regarding these constants
Values for output arguments are used as input arguments for other predicates
A map from types to lists of constants is kept, it is enlarged with constants in the answers
to the queries and the procedure is iterated a user-defined number of times
#T arguments are instantiated in calls, -#T aren’t and the values after the call are added to
the list of constants
-#T arguments can be used to retrieve values for T, #T can’t
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Structure Learning SLIPCOVER

Bottom Clause K

Initialize to empty a map m from types to lists of values
Pick a modehpr , sq, an example e matching s, add to mpT q the values of `T arguments
in e

For i “ 1 to d

For each modebpr , sq
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Structure Learning SLIPCOVER

Bottom Clause K

For each possible way of building a query q from s by replacing `T and #T arguments
with constants from mpT q and all other arguments with variables

Find all possible answers for q and put them in a list L
L1 :“ r elements sampled from L
For each l P L1, add the values in l corresponding to ´T or ´#T to mpT q

F. Riguzzi (UNIFE) PILP-ECAI20 102 / 129



Structure Learning SLIPCOVER

Bottom Clause K

Example:
e “ fatherpjohn,maryq
BG “ tparentpjohn,maryq, parentpdavid , steveq,
parentpkathy ,maryq, femalepkathyq,malepjohnq,malepdavidqu
modehp˚, fatherp`person,`personqq.
modebp˚, parentp`person,´personqq. modebp˚, parentp´#person,`personqq.
modebp˚,malep`personqq. modebp˚, femalep#personqq.
e Ð B “ fatherpjohn,maryq Ð parentpjohn,maryq,malepjohnq,
parentpkathy ,maryq, femalepkathyq.
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Structure Learning SLIPCOVER

Bottom Clause K

The resulting ground clause K is then processed by replacing each term in a + or -
placemarker with a variable
An input variable (+T) must appear as an output variable with the same type in a
previous literal and a constant (#T or -#T) is not replaced by a variable.

K “ fatherpX ,Y q Ð parentpX ,Y q,malepX q, parentpkathy ,Y q, femalepkathyq.
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Structure Learning SLIPCOVER

Determination

determination(pred1/n1,pred2/n2).

indicates that pred2/n2 can appear in the body of clauses for predicate pred1/n1

As in Progol
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Structure Learning SLIPCOVER

Head Declarations

To generate clauses with more than two head atoms, head declarations of the form

modehpr , rs1, . . . , sns, ra1, . . . , ans, rP1{Ar1, . . . ,Pk{Ark sq

s1, . . . , sn are schemas
a1, . . . , an are atoms such that ai is obtained from si by replacing placemarkers with
variables
Pi{Ari are the predicates admitted in the body.
a1, . . . , an are used to indicate which variables should be shared by the atoms in the head.
The generation of a bottom clause is the same except for the fact that the goal to call is
composed of more than one atom.
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Structure Learning SLIPCOVER

Head Declarations

Goal a1, . . . , an is called and r answers that ground all ai s are kept
Resulting bottom clauses a1 ; . . . ; an :´ b1, . . . , bm
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Structure Learning SLIPCOVER

SLIPCOVER

The initial beam associated with predicate P{Ar of h will contain the clause with the
empty body h : 0.5. for each bottom clause h :´ b1, . . . , bm or clauses with an empty
body of the form

a1 :
1

n ` 1
; . . . ; an :

1
n ` 1

.

In each iteration of the cycle over predicates, it performs a beam search in the space of
clauses for the predicate.
The beam contains couples pCl , LIteralsq where Literals “ tb1, . . . , bmu

For each clause Cl of the form Head :´ Body , the refinements are computed by adding a
literal from Literals to the body.
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Structure Learning SLIPCOVER

SLIPCOVER

The tuple (Cl 1, Literals 1) indicates a refined clause Cl 1 together with the new set Literals 1

EMBLEM is then executed for a theory composed of the single refined clause.
LL is used as the score of the updated clause pCl2, Literals 1q.
pCl2, Literals 1q is then inserted into a list of promising clauses.
Two lists are used, TC for target predicates and BC for background predicates.
These lists ave a maximum size
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Structure Learning SLIPCOVER

SLIPCOVER

After the clause search phase, SLIPCOVER performs a greedy search in the space of
theories:

it starts with an empty theory and adds a target clause at a time from the list TC .
After each addition, it runs EMBLEM and computes the LL of the data as the score of the
resulting theory.
If the score is better than the current best, the clause is kept in the theory, otherwise it is
discarded.

Finally, SLIPCOVER adds all the clauses in BC to the theory and performs parameter
learning on the resulting theory.
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Structure Learning SLIPCOVER

Execution Example

UW-CSE dataset: 22 different predicates, such as advisedby/2, yearsinprogram/2 and
taughtby/3.
The aim is to predict the predicate advisedby/2
The language bias includes
modeh(*,advisedby(+person,+person)).
modeh(*,[advisedby(+person,+person),tempadvisedby(+person,+person)],

[advisedby(A,B),tempadvisedby(A,B)],
[professor/1,student/1,hasposition/2,inphase/2,publication/2,
taughtby/3,ta/3,courselevel/2,yearsinprogram/2]).

modeh(*,[student(+person),professor(+person)],
[student(P),professor(P)],
[hasposition/2,inphase/2,taughtby/3,ta/3,courselevel/2,
yearsinprogram/2,advisedby/2,tempadvisedby/2]).

modeh(*,[inphase(+person,pre_quals),inphase(+person,post_quals),
inphase(+person,post_generals)],
[inphase(P,pre_quals),inphase(P,post_quals),inphase(P,post_generals)],
[professor/1,student/1,taughtby/3,ta/3,courselevel/2,
yearsinprogram/2,advisedby/2,tempadvisedby/2,hasposition/2]).
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Structure Learning SLIPCOVER

Execution Example

modeb declarations such as
modeb(*,courselevel(+course, -level)).
modeb(*,courselevel(+course, #level)).

F. Riguzzi (UNIFE) PILP-ECAI20 112 / 129



Structure Learning SLIPCOVER

Execution Example

Example of a two-head bottom clause generated from the first modeh declaration

advisedby(A,B):0.5 :- professor(B),student(A),hasposition(B,C),
hasposition(B,faculty),inphase(A,D),inphase(A,pre_quals),
yearsinprogram(A,E),taughtby(F,B,G),taughtby(F,B,H),taughtby(I,B,J),
taughtby(I,B,J),taughtby(F,B,G),taughtby(F,B,H),
ta(I,K,L),ta(F,M,H),ta(F,M,H),ta(I,K,L),ta(N,K,O),ta(N,A,P),
ta(Q,A,P),ta(R,A,L),ta(S,A,T),ta(U,A,O),ta(U,A,O),ta(S,A,T),
ta(R,A,L),ta(Q,A,P),ta(N,K,O),ta(N,A,P),ta(I,K,L),ta(F,M,H).
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Structure Learning SLIPCOVER

Execution Example

Example of a multi-head bottom clause generated from the second modeh declaration
student(A):0.33; professor(A):0.33 :- inphase(A,B),

inphase(A,post_generals),
yearsinprogram(A,C).
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Structure Learning SLIPCOVER

Execution Example

Example of a refinement from the first bottom clause is
advisedby(A,B):0.5 :- professor(B).

EMBLEM is applied to the theory, the only parameter is updated obtaining:
advisedby(A,B):0.108939 :- professor(B).

The clause is further refined to
advisedby(A,B):0.108939 :- professor(B),hasposition(B,C).
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Structure Learning SLIPCOVER

Execution Example

Example of a refinement that is generated from the second bottom clause is
student(A):0.33; professor(A):0.33 :- inphase(A,B).

Updated refinement after EMBLEM
student(A):0.5869;professor(A):0.09832 :- inphase(A,B).
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Structure Learning SLIPCOVER

Execution Example

When searching the space of theories for the target predicate advisedby, SLIPCOVER
generates the program:
advisedby(A,B):0.1198 :- professor(B),inphase(A,C).
advisedby(A,B):0.1198 :- professor(B),student(A).
with a LL of -350.01.
After EMBLEM we get:
advisedby(A,B):0.05465 :- professor(B),inphase(A,C).
advisedby(A,B):0.06893 :- professor(B),student(A).
with a LL of -318.17.
Since the LL increased, the last clause is retained and at the next iteration a new clause is
added:
advisedby(A,B):0.12032 :- hasposition(B,C),inphase(A,D).
advisedby(A,B):0.05465 :- professor(B),inphase(A,C).
advisedby(A,B):0.06893 :- professor(B),student(A).
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Structure Learning ProbFOIL+

ProbFOIL+

ProbFOIL+ [De Raedt et al IJCAI 2015] learn rules from probabilistic examples.

Definition (ProbFoil+ learning problem)

Given
1 a set of training examples E “ tpe1, p1q, . . . , peT , pT qu where each ei is a ground fact for

a target predicate
2 a background theory B containing information about the examples in the form of a

ProbLog program
3 a space of possible clauses L

find a hypothesis H Ď L so that the absolute error AE “
řT

i“1 |Ppei q ´ pi | is minimized, i.e.,

arg min
HPL

T
ÿ

i“1

|Ppei q ´ pi |
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Structure Learning ProbFOIL+

ProbFOIL+

Form of clauses: x :: h Ð B , with x P r0, 1s.
To be interpreted as
h Ð B, probpidq.
x :: probpidq.

Different from an LPAD h : x Ð B, as this stands for the union of ground rules
h1 : x Ð B 1. obtained by grounding h : x Ð B.
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Structure Learning ProbFOIL+

ProbFOIL+

ProbFOIL+ generalizes mFOIL and FOIL
Covering loop: one rule is added to the theory at each iteration.
Clause search loop: builds the rule by iteratively adding literals to the body.
The covering loop ends when a condition based on a global scoring function is satisfied.
Clause search loop: beam search using a local scoring function as the heuristic.
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Structure Learning ProbFOIL+

ProbFOIL+

1: function ProbFOIL+(target)
2: H ÐH

3: while true do
4: clause Ð LearnRulepH, targetq
5: if GScorepHq ă GScorepH Y tclauseuq ^ SignificantpH, clauseq then
6: H Ð H Y tclauseu
7: else
8: return H
9: end if
10: end while
11: end function
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Structure Learning ProbFOIL+

ProbFOIL+

1: function LearnRule(H, target)
2: candidates Ð tx :: target Ð trueu
3: best Ð px :: target Ð trueq
4: while candidates ‰ H do
5: next_cand ÐH

6: for all x :: target Ð body P candidates do
7: for all ptarget Ð body , refinementq P ρptarget Ð bodyq do
8: if not RejectpH, best, px :: target Ð body , refinementqq then
9: next_cand Ð next_cand Y tpx :: target Ð body , refinementqu
10: if LScorepH, px :: target Ð body , refinementqq ą LScorepH, bestq then
11: best Ð px :: target Ð body , refinementq
12: end if
13: end if
14: end for
15: end for
16: candidates Ð next_cand
17: end while
18: return best
19: end function
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Structure Learning ProbFOIL+

ProbFOIL+

Global scoring function: accuracy over the dataset, given by

accuracyH “
TPH ` TNH

T

where T is number of examples and TPH and TNH are, respectively, the number of true
positives and of true negatives
Local scoring function: an m-estimate of the precision

m-estimateH “
TPH `m P

P`N

TPH ` FPH `m
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Structure Learning ProbFOIL+

ProbFOIL+

Each example ei is associated with a probability pi .
An example pei , pi q contributes a part pi to the positive part of training set and 1´ pi to
the negative part: P “

řT
i“1 pi and N “

řT
i“1p1´ pi q.

Hypothesis H assigns a probability pH,i to each example ei

The contribution tpH,i of example ei to TPH will be pH,i if pi ą pH,i and pi otherwise,
because if pi ă pH,i the hypothesis is overestimating ei .
The contribution fpH,i of example ei to FPH will be pH,i ´ pi if pi ă pH,i and 0 otherwise,
because if pi ą pH,i the hypothesis is underestimating ei .

TPH “
řT

i“1 tpH,i , FPH “
řT

i“1 fpH,i , TNH “ N ´ FPH and FNH “ P ´ TPH
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Structure Learning ProbFOIL+

ProbFOIL+

LScorepH, x :: C q computes the local scoring function for the addition of clause
C pxq “ x :: C to H

The heuristic depends on the value of x P r0, 1s.
Find the value of x that maximizes the score

Mpxq “
TPHYCpxq `mP{T

TPHYCpxq ` FPHYCpxq `m
.

We need to compute TPHYCpxq and FPHYCpxq, tpHYCpxq,i and fpHYCpxq,i as a function of
x .
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Structure Learning ProbFOIL+

ProbFOIL+

Mpxq is a piecewise function where each piece is of the form

Ax ` B

Cx ` D

with A,B,C and D constants.
The derivative of a piece is

dMpxq

dx
“

AD ´ BC

pCx ` Dq2

It is either 0 or different from 0 everywhere in each interval so the maximum of Mpxq can
only occur at the xi s values that are the endpoints of the intervals.
Compute the value of Mpxq for each xi and pick the maximum.
Ordering the xi values
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Structure Learning ProbFOIL+

ProbFOIL+

ProbFOIL+ prunes refinements when
they cannot lead to a local score higher than the current best,
they cannot lead to a global score higher than the current best or
they are not significant, i.e., when they provide only a limited contribution.

By adding a literal to a clause, the true positives and false positives can only decrease, so
we can obtain an upper bound of the local score by setting the false positives to 0 and
computing the m-estimate.
By adding a clause to a theory, the true positives and false positives can only increase, so
if the number of true positives of H Y C pxq is not larger than the true positives of H, the
refinement C pxq can be discarded.
significance test based on the likelihood ratio statistics.
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Conclusions

Conclusions

Exciting field!
Much is left to do:

Structure learning search strategies
Learning programs with continuous variables
Combining Deep Learning with PILP
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