@inproceedings{GraLamMel97-NW, author = {Fausto Gramantieri and Evelina Lamma and Paola Mello and Fabrizio Riguzzi}, title = {Un Sistema Basato sulla Conoscenza per il Calcolo dei Function Point}, booktitle = {Incontro del Gruppo di Lavoro su Rapprensentazione della Conoscenza e Ragionamento Automatico dell'Associazione Italiana per l'Intelligenza Artificiale (AI*IA) e dell'Associazione italiana Tecnologie Avanzate Basate su concetti Orientati ad Oggetti (TABOO) dal titolo ``Rappresentazione della conoscenza e tecniche ad oggetti nell'ingegneria del software'', Bologna, 4 \April\ 1997}, month = apr, year = 1997, pdf = {http://ml.unife.it/wp-content/uploads/Papers/GraLamMel-TABOO97.pdf} }
@inproceedings{MilOmiRig97-NW, author = {Michela Milano and Andrea Omicini and Fabrizio Riguzzi}, title = {Learning with an Object-Oriented Data Model}, booktitle = {Incontro dei Gruppi di Lavoro su Apprendimento Automatico e Linguaggio Naturale dell'Associazione Italiana per l'Intelligenza Artificiale (AIIA)}, month = dec, year = 1997, pdf = {http://ml.unife.it/wp-content/uploads/Papers/MilOmiRig-AALN97.pdf} }
@inproceedings{Rig05-RCRA05-NW, author = {Fabrizio Riguzzi}, title = {A Comparison of {ILP} Systems on the {Sisyphus} Dataset}, pdf = {http://ml.unife.it/wp-content/uploads/Papers/rcra2005cr%20riguzzi.pdf}, booktitle = {Incontro del Gruppo di Lavoro Rappresentazione della Conoscenza e Ragionamento Automatico ({RCRA}) dell'Associazione Italiana per l'Intelligenza Artificiale ({AI*IA}) dal titolo ``Analisi Sperimentale e Benchmark di Algoritmi per l'Intelligenza Artificiale'', 10 giugno 2005}, keywords = {Machine Learning, Inductive Logic Programming}, abstract = {In this paper we present a comparison of two Inductive Logic Programming (ILP) systems on the Sisyphus dataset. The aim of the comparison is to to show how the systems behave on a large dataset. The considered systems are Aleph and Tilde. Both systems have an unacceptable execution time on the whole dataset, so they are run over samples extracted from the dataset. The comparison shows that, on average, Tilde finds more accurate theories in a smaller time. }, editor = {Marco Cadoli and Marco Gavanelli and Tony Mancini}, month = jun, year = {2005}, address = {Ferrara, \Italy}, issn = {1724-8035} }
@inproceedings{FlaMarRig06-RCRA06-NW, author = {Peter Flach and Valentina Maraldi and Fabrizio Riguzzi}, title = {Algorithms for Efficiently and Effectively Using Background Knowledge in Tertius}, pdf = {http://ml.unife.it/wp-content/uploads/Papers/FlaMarRig-RCRA06.pdf}, booktitle = {Incontro del Gruppo di Lavoro Rappresentazione della Conoscenza e Ragionamento Automatico ({RCRA}) dell'Associazione Italiana per l'Intelligenza Artificiale ({AI*IA}) dal titolo ``Analisi Sperimentale e Benchmark di Algoritmi per l'Intelligenza Artificiale'', 23 giugno 2006}, keywords = {Machine Learning, Inductive Logic Programming}, abstract = {\texttt{Tertius} is an Inductive Logic Programming system that performs confirmatory induction, i.e., it looks for the $n$ clauses that have the highest value of a confirmation evaluation function. In this setting, background knowledge is very useful because it can improve the reliability of the evaluation function, assigning minimal confirmation to clauses that are implied by the background knowledge and increasing the confirmation of the remaining clauses. We propose the algorithms \emph{Background1} and \emph{Background2} that look for clauses in the background that imply the clause under evaluation by \texttt{Tertius}. Both are based on a simplified implication test that is correct with respect to $\theta$-subsumption but not complete. The implication test is not complete because we want to keep the run time inside acceptable bounds. We compare \emph{Background1} with \emph{Background2} on two datasets. The results show that \emph{Background2} is more efficient than \emph{Background1}. Moreover, we also present the algorithm \emph{Preprocess} that infers new clauses from the background knowledge in order to exploit it as much as possible. The algorithm modifies the consequence finding algorithm proposed by Inoue by reducing its execution time while giving up completeness. }, editor = {Marco Gavanelli and Tony Mancini}, month = jun, year = {2006}, address = {Udine, \Italy} }
@inproceedings{LamMelRig06-RCRA06-NW, author = {Evelina Lamma and Paola Mello and Fabrizio Riguzzi}, title = {Exploiting Abduction for Learning from Incomplete Interpretations}, pdf = {http://ml.unife.it/wp-content/uploads/Papers/LamMelRig-RCRA06.pdf}, booktitle = {Incontro del Gruppo di Lavoro Rappresentazione della Conoscenza e Ragionamento Automatico ({RCRA}) dell'Associazione Italiana per l'Intelligenza Artificiale ({AI*IA}) dal titolo ``Analisi Sperimentale e Benchmark di Algoritmi per l'Intelligenza Artificiale'', 23 giugno 2006}, keywords = {Machine Learning, Inductive Logic Programming}, abstract = {In this paper we describe an approach for integrating abduction and induction in the ILP setting of learning from interpretations with the aim of solving the problem of incomplete information both in the background knowledge and in the interpretations. The approach is inspired by the techniques developed in the learning from entailment setting for performing induction from an incomplete background knowledge. Similarly to those techniques, we exploit an abductive proof procedure for completing the available background knowledge and input interpretations. The approach has been implemented in a system called AICL that is based on the ILP system ICL. Preliminary experiments have been performed on a toy domain where knowledge has been gradually removed. The experiments show that AICL has an accuracy that is superior to the one of ICL for levels of incompleteness between 5\% and 25\%. }, editor = {Marco Gavanelli and Tony Mancini}, month = jun, year = {2006}, address = {Udine, \Italy} }
@inproceedings{AlbGavLam09-CEUR-NW, author = {Marco Alberti and Marco Gavanelli and Evelina Lamma and Fabrizio Riguzzi and Sergio Storari }, editor = {Matteo Baldoni and Cristina Baroglio}, booktitle = {Il Milione (i.e. $2^6$, June 3rd 2008) A Journey in the Computational Logic in Italy, Proceedings of the Day Dedicated to Prof. {Alberto Martelli} Turin, Italy, June 3, 2008}, title = {Inducing Specification of Interaction Protocols and Business Processes and Proving their Properties}, year = {2009}, abstract = {In this paper, we overview our recent research activity concerning the induction of Logic Programming specifications, and the proof of their properties via Abductive Logic Programming. Both the inductive and abductive tools here briefly described have been applied to respectively learn and verify (properties of) interaction protocols in multi-agent systems, Web service choreographies, careflows and business processes.}, pdf = {http://ceur-ws.org/Vol-487/paper6.pdf}, series = {CEUR Workshop Proceedings}, publisher = {Sun {SITE} Central Europe}, issn = {1613-0073}, volume = {487}, pages = {32-37}, address = {Aachen, \Germany}, keywords = {Business Process Management, Logic Programming} }
@inproceedings{RigBelLamZese12-PAI12-NW, title = {Semantics and Inference for Probabilistic Ontologies}, pages = { 41-46}, author = {Fabrizio Riguzzi and Evelina Lamma and Elena Bellodi and Riccardo Zese}, editor = {Matteo Baldoni and Federico Chesani and Bernardo Magnini and Paola Mello and Marco Montali}, booktitle = { Popularize Artificial Intelligence. Proceedings of the AI*IA Workshop and Prize for Celebrating 100th Anniversary of Alan Turing's Birth ({PAI 2012}), Rome, Italy, June 15, 2012}, copyright = {by the authors}, series = {CEUR Workshop Proceedings}, publisher = {Sun {SITE} Central Europe}, issn = {1613-0073}, address = {Aachen, Germany}, volume = {860}, year = {2012}, pdf = {http://ceur-ws.org/Vol-860/paper3.pdf} }
@inproceedings{BufLamRigFor12-PAI12-NW, title = {Un sistema di Vision Inspection basato su reti neurali}, author = {Ludovico Buffon and Evelina Lamma and Fabrizio Riguzzi and Davide Formenti}, pages = { 1-6}, editor = {Matteo Baldoni and Federico Chesani and Bernardo Magnini and Paola Mello and Marco Montai}, booktitle = { Popularize Artificial Intelligence. Proceedings of the AI*IA Workshop and Prize for Celebrating 100th Anniversary of Alan Turing's Birth ({PAI 2012}), Rome, Italy, June 15, 2012}, copyright = {by the authors}, series = {CEUR Workshop Proceedings}, publisher = {Sun {SITE} Central Europe}, issn = {1613-0073}, address = {Aachen, Germany}, volume = {860}, year = {2012}, pdf = {http://ceur-ws.org/Vol-860/paper9.pdf} }
This file was generated by bibtex2html 1.98.