PhD Student - Dottorato Nazionale in Intelligenza Artificiale per Industria 4.0 - "Neural symbolic computation for Industry 4.0" Dipartimento di Ingegneria,
Università di Ferrara,
Laboratorio 331
Blocco A, Polo Scientifico Tecnologico
University of Ferrara
Via Saragat 1,
44122,
Ferrara,
Italy
E-Mail:
alice.bizzarri@unife.it
Ricevimento: su appuntamento richiesto via email o telefono..
Robin Manhaeve, Francesco Giannini, Mehdi Ali, Damiano Azzolini, Alice
Bizzarri, Andrea Borghesi, Samuele Bortolotti, Luc De Raedt, Devendra Dhami,
Michelangelo Diligenti, Sebastijan Dumancic, Boi Faltings, Elisabetta
Gentili, Alfonso Gerevini, Marco Gori, Tias Guns, Martin Homola, Kristian
Kersting, Jens Lehmann, Michele Lombardi, Luca Lorello, Emanuele Marconato,
Stefano Melacci, Andrea Passerini, Debjit Paul, Fabrizio Riguzzi, Stefano
Teso, Neil Yorke-Smith, and Marco Lippi.
Benchmarking in neuro-symbolic ai.
In Proceedings of The 4th International Joint Conference on
Learning & Reasoning, 2025.
[ bib ]
Alice Bizzarri, Chung-En Yu, Brian Jalaian, Fabrizio Riguzzi, and Nathaniel D.
Bastian.
Neuro-symbolic integration for open set recognition in network
intrusion detection.
In Alessandro Artale, Gabriella Cortellessa, and Marco Montali,
editors, AIxIA 2024 -- Advances in Artificial Intelligence, pages
50--63, Cham, 2025. Springer Nature Switzerland.
[ bib |
DOI ]
Alice Bizzarri, Brian Jalaian, Fabrizio Riguzzi, and Nathaniel D. Bastian.
A neuro-symbolic artificial intelligence network intrusion detection
system.
In International Conference on Computer Communications and
Networks, ICCCN, 2024.
[ bib |
DOI ]
Damiano Azzolini, Alice Bizzarri, Michele Fraccaroli, Francesco Bertasi, and
Evelina Lamma.
A machine learning pipeline to analyse multispectral and
hyperspectral images: Full/regular research paper (csci-rthi).
In 2023 International Conference on Computational Science and
Computational Intelligence (CSCI), pages 1306--1311, 2023.
[ bib |
DOI ]
Alice Bizzarri, Michele Fraccaroli, Evelina Lamma, and Fabrizio Riguzzi.
Integration between constrained optimization and deep networks: a
survey.
Frontiers in Artificial Intelligence, 7, 2024.
[ bib |
DOI |
http ]
Elena Bellodi, Davide Bertozzi, Alice Bizzarri, Michele Favalli, Michele
Fraccaroli, and Riccardo Zese.
Efficient resource-aware neural architecture search with a
neuro-symbolic approach.
pages 171--178, 2023.
[ bib |
DOI ]
Michele Fraccaroli, Alice Bizzarri, Paolo Casellati, and Evelina Lamma.
Cross entropy overlap distance.
Accepted and Presented at ITAL-IA 2022, workshop on AI for Industry,
feb 2022.
[ bib |
.pdf ]
Arnaud Nguembang Fadja, Michele Fraccaroli, Alice Bizzarri, Giulia Mazzuchelli,
and Evelina Lamma.
Neural-symbolic ensemble learning for early-stage prediction of
critical state of covid-19 patients.
Medical & Biological Engineering & Computing, 2022.
[ bib |
DOI |
http ]
Michele Fraccaroli, Giulia Mazzucchelli, and Alice Bizzarri.
Machine learning techniques for extracting relevant features from
clinical data for COVID-19 mortality prediction.
In 2021 Symposium on Computers and Communications (ISCC): 26th
IEEE Symposium on Computers and Communications - Workshop on ICT Solutions
for eHealth (ICTS4eHealth) (ICTS4eHealth2021), pages 1--7, Athens, Greece,
September 2021.
[ bib |
DOI ]