Arnaud Nguembang Fadja, Giuseppe Cota, Francesco Bertasi, Fabrizio Riguzzi,
Enzo Losi, Lucrezia Manservigi, Mauro Venturini, and Giovanni Bechini.
Machine learning approaches for the prediction of gas turbine
transients.
Journal of Computer Science, 20(5):495--510, Feb 2024.
[ bib |
DOI |
http ]
Arnaud Nguembang Fadja, Michele Fraccaroli, Alice Bizzarri, Giulia Mazzuchelli,
and Evelina Lamma.
Neural-symbolic ensemble learning for early-stage prediction of
critical state of covid-19 patients.
Medical & Biological Engineering & Computing, 2022.
[ bib |
DOI |
http ]
Arnaud Nguembang Fadja, Fabrizio Riguzzi, Giorgio Bertorelle, and Emiliano
Trucchi.
Identification of natural selection in genomic data with deep
convolutional neural network.
BioData Mining, 14(1):51, 2021.
[ bib |
DOI ]
Arnaud Nguembang Fadja and Fabrizio Riguzzi.
Lifted discriminative learning of probabilistic logic programs.
In Nicolas Lachiche and Christel Vrain, editors, 27th
International Conference on Inductive Logic Programming, ILP 2017, 2017.
[ bib |
.pdf ]
Arnaud Nguembang Fadja, Evelina Lamma, and Fabrizio Riguzzi.
Deep probabilistic logic programming.
In Christian Theil Have and Riccardo Zese, editors,
Proceedings of the 4th International Workshop on Probabilistic logic
programming, (PLP 2017), volume 1916 of CEUR Workshop Proceedings,
pages 3--14, Aachen, Germany, 2017. Sun SITE Central Europe.
[ bib |
.pdf ]