[15]
|
Marco Alberti, Evelina Lamma, Fabrizio Riguzzi, and Riccardo Zese.
A semantics for probabilistic hybrid knowledge bases with function
symbols.
Artificial Intelligence, 2025.
[ bib ]
|
[14]
|
Damiano Azzolini, Giuseppe Mazzotta, Francesco Ricca, and Fabrizio Riguzzi.
Most probable explanation in probabilistic answer set programming.
In International Joint Conference on Artificial Intelligence,
2025.
[ bib ]
|
[13]
|
Alice Bizzarri, Chung-En Yu, Brian Jalaian, Fabrizio Riguzzi, and Nathaniel D.
Bastian.
Neuro-symbolic integration for open set recognition in network
intrusion detection.
In Alessandro Artale, Gabriella Cortellessa, and Marco Montali,
editors, AIxIA 2024 -- Advances in Artificial Intelligence, pages
50--63, Cham, 2025. Springer Nature Switzerland.
[ bib |
DOI ]
|
[12]
|
Damiano Azzolini, Elena Bellodi, Rafael Kiesel, and Fabrizio Riguzzi.
Solving decision theory problems with probabilistic answer set
programming.
Theory and Practice of Logic Programming, 2025.
[ bib |
DOI ]
|
[11]
|
Fabrizio Riguzzi.
Quantum algorithms for weighted constrained sampling and weighted
model counting.
Quantum Machine Intelligence, 6(2):73, 2024.
[ bib |
DOI ]
|
[10]
|
Alice Bizzarri, Brian Jalaian, Fabrizio Riguzzi, and Nathaniel D. Bastian.
A neuro-symbolic artificial intelligence network intrusion detection
system.
In International Conference on Computer Communications and
Networks, ICCCN, 2024.
[ bib |
DOI ]
|
[9]
|
Damiano Azzolini and Fabrizio Riguzzi.
Probabilistic answer set programming with discrete and continuous
random variables.
Theory and Practice of Logic Programming, pages 1--32, 2024.
[ bib |
DOI |
http ]
|
[8]
|
Damiano Azzolini and Fabrizio Riguzzi.
Fast inference for probabilistic answer set programs via the residual
program.
Theory and Practice of Logic Programming, 24(4):682–697,
2024.
[ bib |
DOI ]
|
[7]
|
Damiano Azzolini, Elisabetta Gentili, and Fabrizio Riguzzi.
Symbolic parameter learning in probabilistic answer set programming.
Theory and Practice of Logic Programming, 24(4):698–715,
2024.
[ bib |
DOI ]
|
[6]
|
Damiano Azzolini, Matteo Bonato, Elisabetta Gentili, and Fabrizio Riguzzi.
Logic programming for knowledge graph completion.
In Emanuele De Angelis and Maurizio Proietti, editors,
Proceedings of the 39th Italian Conference on Computational Logic
(CILC2024), volume 3733 of CEUR Workshop Proceedings, pages 1--14,
Aachen, Germany, 2024. Sun SITE Central Europe.
[ bib |
.pdf ]
|
[5]
|
Fabrizio Riguzzi.
Quantum algorithms for weighted constrained sampling and weighted
model counting.
arXiv, abs/2407.12816, 2024.
[ bib |
http |
http ]
|
[4]
|
Alice Bizzarri, Michele Fraccaroli, Evelina Lamma, and Fabrizio Riguzzi.
Integration between constrained optimization and deep networks: a
survey.
Frontiers in Artificial Intelligence, 7, 2024.
[ bib |
DOI |
http ]
|
[3]
|
Damiano Azzolini and Fabrizio Riguzzi.
Inference in probabilistic answer set programs with imprecise
probabilities via optimization.
In Negar Kiyavash and Joris M. Mooij, editors, Proceedings of
the Fortieth Conference on Uncertainty in Artificial Intelligence, volume
244 of Proceedings of Machine Learning Research, pages 225--234. PMLR,
15--19 Jul 2024.
[ bib |
.html |
.pdf ]
|
[2]
|
Arnaud Nguembang Fadja, Giuseppe Cota, Francesco Bertasi, Fabrizio Riguzzi,
Enzo Losi, Lucrezia Manservigi, Mauro Venturini, and Giovanni Bechini.
Machine learning approaches for the prediction of gas turbine
transients.
Journal of Computer Science, 20(5):495--510, Feb 2024.
[ bib |
DOI |
http ]
|
[1]
|
Damiano Azzolini, Elena Bellodi, and Fabrizio Riguzzi.
Learning the parameters of probabilistic answer set programs.
In Stephen H. Muggleton and Alireza Tamaddoni-Nezhad, editors,
Inductive Logic Programming - ILP 2022, volume 14363 of Lecture Notes
in Computer Science, pages 1--14, Cham, 2024. Springer Nature Switzerland.
[ bib |
DOI |
http ]
|