[22]

Fabrizio Riguzzi, Elena Bellodi, Riccardo Zese, Marco Alberti, and Evelina
Lamma.
Probabilistic inductive constraint logic.
Machine Learning, pages 132, 2020.
[ bib 
DOI 
http ]

[21]

Fabrizio Riguzzi.
Quantum weighted model counting.
In Giuseppe De Giacomo, Alejandro Catala, Bistra Dilkina, Michela
Milano, Senén Barro, Alberto Bugarín, and Jérôme Lang, editors,
24th European Conference on Artificial Intelligence (ECAI 2020), pages
26402647, Amsterdam, Berlin, Washington DC, 2020. © CC BYNC
4.0, IOS Press.
[ bib 
DOI 
http 
.pdf ]

[20]

Fabrizio Riguzzi.
Review of Kahl, Patrick Thor; Leclerc, Anthony P.; Tran, Son Cao A
parallel memoryefficient epistemic logic program solver: harder, better,
faster. Ann. Math. Artif. Intell. 86 (2019), no. 13, 61–85.
Mathematical Reviews, © American Mathematical
Society, January 2020.
[ bib 
http ]

[19]

Fabrizio Riguzzi.
Review of Costantini, Stefania. About epistemic negation and world
views in epistemic logic programs. Theory Pract. Log. Program. 19 (2019), no.
56, 790807.
Mathematical Reviews, © American Mathematical
Society, May 2020.
[ bib 
http ]

[18]

Fabrizio Riguzzi.
Review of Arieli, Ofer; Borg, AnneMarie; Heyninck, Jesse A review of
the relations between logical argumentation and reasoning with maximal
consistency. Ann. Math. Artif. Intell. 87 (2019), no. 3, 187226.
Mathematical Reviews, © American Mathematical
Society, 2020.
[ bib 
http ]

[17]

Fabrizio Riguzzi Michele Fraccaroli, Evelina Lamma.
Automatic setting of DNN hyperparameters by mixing Bayesian
Optimization and tuning rules.
In The Sixth International Conference on Machine Learning,
Optimization, and Data Science 2020. To be published., Lecture Notes in
Computer Science. Springer, 2020.
[ bib ]

[16]

Elena Bellodi, Marco Alberti, Fabrizio Riguzzi, and Riccardo Zese.
MAP inference for probabilistic logic programming.
Theory and Practice of Logic Programming, 20(5):641–655,
© Cambridge University Press, 2020.
[ bib 
DOI 
http 
.pdf ]

[15]

Damiano Azzolini, Fabrizio Riguzzi, and Evelina Lamma.
An analysis of Gibbs sampling for probabilistic logic programs.
In Carmine Dodaro, George Aristidis Elder, Wolfgang Faber, Jorge
Fandinno, Martin Gebser, Markus Hecher, Emily LeBlanc, Michael Morak, and
Jessica Zangari, editors, Workshop on Probabilistic Logic Programming
(PLP 2020), volume 2678 of CEUR Workshop Proceedings, pages 113,
Aachen, Germany, 2020. © by the authors, Sun SITE Central
Europe.
[ bib 
.pdf ]

[14]

Francesco Ricca, Alessandra Russo, Sergio Greco, Nicola Leone, Alexander
Artikis, Gerhard Friedrich, Paul Fodor, Angelika Kimmig, Francesca A. Lisi,
Marco Maratea, Alessandra Mileo, and Fabrizio Riguzzi, editors.
Proceedings 36th International Conference on Logic Programming
(Technical Communications), number 325 in Electronic Proceedings in
Theoretical Computer Science, 2020.
[ bib 
DOI 
http ]

[13]

Damiano Azzolini, Elena Bellodi, Alessandro Brancaleoni, Fabrizio Riguzzi, and
Evelina Lamma.
Modeling bitcoin lightning network by logic programming.
In Francesco Ricca, Alessandra Russo, Sergio Greco, Nicola Leone,
Alexander Artikis, Gerhard Friedrich, Paul Fodor, Angelika Kimmig, Francesca
Lisi, Marco Maratea, Alessandra Mileo, and Fabrizio Riguzzi, editors,
Proceedings of the 36th International Conference on Logic Programming
(Technical Communications), pages 258260, Waterloo, Australia, 2020.
© by the authors, Open Publishing Association.
[ bib 
DOI 
http 
http ]

[12]

Damiano Azzolini, Fabrizio Riguzzi, and Evelina Lamma.
Modeling smart contracts with probabilistic logic programming.
In Witold Abramowicz and Gary Klein, editors, Business
Information Systems Workshops, volume 394 of Lecture Notes in Business
Information Processing, pages 8698, Cham, 2020. © Springer,
Springer International Publishing.
The final publication is available at Springer via
http://dx.doi.org/10.1007/9783030611460_7.
[ bib 
DOI 
.pdf ]

[11]

Damiano Azzolini, Fabrizio Riguzzi, and Evelina Lamma.
Analyzing transaction fees with probabilistic logic programming.
In Witold Abramowicz and Rafael Corchuelo, editors, Business
Information Systems Workshops BIS 2019, volume 373 of Lecture Notes in
Business Information Processing, pages 243254, Cham, 2019. © Springer, Springer International Publishing.
The final publication is available at Springer via
http://dx.doi.org/10.1007/9783030366919_21.
[ bib 
DOI 
.pdf ]

[10]

Fabrizio Riguzzi.
Quantum weighted model counting.
arXiv, abs/1910.13530, 2019.
[ bib 
http ]

[9]

Damiano Azzolini, Fabrizio Riguzzi, and Evelina Lamma.
Studying transaction fees in the bitcoin blockchain with
probabilistic logic programming.
Information, 10(11):335, © CCBY, 2019.
[ bib 
DOI 
http ]

[8]

Damiano Azzolini, Fabrizio Riguzzi, Evelina Lamma, and Franco Masotti.
A comparison of MCMC sampling for probabilistic logic programming.
In Mario Alviano, Gianluigi Greco, and Francesco Scarcello, editors,
Proceedings of the 18th Conference of the Italian Association for
Artificial Intelligence (AI*IA2019), Rende, Italy 1922 November 2019,
volume 11946 of Lecture Notes in Computer Science, pages 1829,
Heidelberg, Germany, 2019. © Springer, Springer.
The final publication is available at Springer via
http://dx.doi.org/10.1007/9783030351663_2.
[ bib 
DOI 
.pdf ]

[7]

Fabrizio Riguzzi, Kristian Kersting, Marco Lippi, and Sriraam Natarajan.
Editorial: Statistical relational artificial intelligence.
Frontiers in Robotics and AI, 6:68, © by the
authors, 2019.
[ bib 
DOI 
http ]

[6]

Giuseppe Cota, Fabrizio Riguzzi, Evelina Lamma, and Riccardo Zese.
KRaider: a crawler for linked data.
In Alberto Casagrande and Eugenio Omodeo, editors, Proceedings
of the 34th Italian Conference on Computational Logic, volume 2396 of
CEUR Workshop Proceedings, pages 202216, Aachen, Germany, 2019.
© by the authors, Sun SITE Central Europe.
[ bib 
.pdf ]

[5]

Arnaud Nguembang Fadja and Fabrizio Riguzzi.
Lifted discriminative learning of probabilistic logic programs.
Machine Learning, 108(7):11111135, © Springer,
2019.
The original publication is available at
http://link.springer.com.
[ bib 
DOI 
.pdf ]

[4]

Nicolas Lachiche, Christel Vrain, Fabrizio Riguzzi, Bellodi Elena, and Zese
Riccardo.
Preface to special issue on Inductive Logic Programming, ILP 2017
and 2018.
Machine Learning, pages 13, 2019.
[ bib 
DOI ]

[3]

Riccardo Zese, Giuseppe Cota, Evelina Lamma, Elena Bellodi, and Fabrizio
Riguzzi.
Probabilistic DL reasoning with pinpointing formulas: A
prologbased approach.
Theory and Practice of Logic Programming, 19(3):449476,
© Cambridge University Press, 2019.
[ bib 
DOI 
.pdf ]

[2]

Fabrizio Riguzzi.
Review of Avanzini, Martin; Dal Lago, Ugo. On sharing, memoization,
and polynomial time. Inform. and Comput. 261 (2018), part 1, 322.
Mathematical Reviews, © American Mathematical
Society, January 2019.
[ bib 
http ]

[1]

Jan Wielemaker, Fabrizio Riguzzi, Bob Kowalski, Torbjörn Lager, Fariba Sadri,
and Miguel Calejo.
Using SWISH to realise interactive web based tutorials for logic
based languages.
Theory and Practice of Logic Programming, 19(2):229261,
© Cambridge University Press, 2019.
[ bib 
DOI 
.pdf ]
